摘要:
The present invention provides a transparent substrate that significantly prevents the progress of a crack in a thin-plate glass and the rupture of the glass, and is excellent in bending property and flexibility. A transparent substrate according to an embodiment of the present invention includes: a thin-plate glass having a thickness of 10 μm to 100 μm; and a resin layer on at least one side of the thin-plate glass, wherein a shrinkage stress of the resin layer on the thin-plate glass is 5 MPa or more.
摘要:
There is provided a transparent substrate which can be reduced in thickness, which is excellent in adhesiveness between an inorganic glass and a resin layer under a high-temperature and high-humidity environment, bending property, flexibility, and impact resistance, and which significantly prevents the progress of a crack in a glass.A transparent substrate according to an embodiment of the present invention includes: an inorganic glass; and a resin layer, which is obtained by applying a solution of a thermoplastic resin onto one side or both sides of the inorganic glass, wherein: the solution comprises a first thermoplastic resin having a hydroxy group at a terminal; the inorganic glass and the resin layer comprise an epoxy group-terminated coupling agent layer therebetween; the coupling agent layer is directly formed on the inorganic glass; and the resin layer is directly formed on the coupling agent layer.
摘要:
The present invention provides a transparent substrate that significantly prevents the progress of a crack in a thin-plate glass and the rupture of the glass, and is excellent in bending property and flexibility. A transparent substrate according to an embodiment of the present invention includes: a thin-plate glass having a thickness of 10 μm to 100 μm; and a resin layer on at least one side of the thin-plate glass, wherein a shrinkage stress of the resin layer on the thin-plate glass is 5 MPa or more.
摘要:
There is provided a flexible substrate having excellent flexibility and gas barrier properties. A flexible substrate 100 according to the present invention includes: a base material 20 including an inorganic glass 10 and resin layers 11 and 11′ placed on both sides of the inorganic glass 10; and an inorganic thin film 12 placed on a side of one of the resin layers where the inorganic glass is not placed, wherein the inorganic thin film 12 is formed on at least a peripheral edge of one surface of the base material.
摘要:
There is provided a transparent substrate which is excellent in dimensional stability, which significantly prevents the progress of a crack in an inorganic glass and the rupture of the inorganic glass, and which is excellent in flexibility. A transparent substrate according to an embodiment of the present invention includes: an inorganic glass having a thickness of 10 μm to 100 μm; and a resin layer on one side, or each of both sides, of the inorganic glass, wherein: a ratio of a total thickness of the resin layer to a thickness of the inorganic glass is 0.9 to 4; the resin layer has a modulus of elasticity at 25° C. of 1.5 GPa to 10 GPa; and the resin layer has a fracture toughness value at 25° C. of 1.5 MPa·m1/2 to 10 MPa·m1/2.
摘要:
The present invention provides a transparent substrate excellent in solvent crack resistance, toughness, heat resistance, and flexibility. A transparent substrate according to an embodiment of the present invention includes: an inorganic glass; and a first resin layer placed on at least one side of the inorganic glass, wherein: the first resin layer contains a resin compound having a weight-average molecular weight in terms of polystyrene of 8×104 to 100×104; and no solvent crack occurs when a mixed solvent containing 20 wt % to 95 wt % of at least one kind of solvent selected from the group consisting of acetone, N-methylpyrrolidone, dimethyl sulfoxide, and N,N-dimethylformamide is brought into contact with the substrate.
摘要:
The present invention provides a transparent substrate excellent in solvent crack resistance, toughness, heat resistance, and flexibility. A transparent substrate according to an embodiment of the present invention includes: an inorganic glass; and a first resin layer placed on at least one side of the inorganic glass, wherein: the first resin layer contains a resin compound having a weight-average molecular weight in terms of polystyrene of 8×104 to 100×104; and no solvent crack occurs when a mixed solvent containing 20 wt % to 95 wt % of at least one kind of solvent selected from the group consisting of acetone, N-methylpyrrolidone, dimethyl sulfoxide, and N,N-dimethylformamide is brought into contact with the substrate.
摘要:
By a method for producing a liquid crystal cell substrate having a base and a birefringent layer, which includes producing a precursor layer of the birefringent layer by applying a solution of a polymer that hardens to form the birefringent layer, directly onto one surface of the base, and producing the birefringent layer by hardening the precursor layer, the present invention provides a method for producing a birefringent layer on a liquid crystal cell substrate or a liquid crystal cell substrate of a liquid crystal panel used in a liquid crystal display.
摘要:
An optical compensating film using a norbornene-based resin film in which the durability at an interface surface of the adhesive of a LCD is improved, a polarizing plate, and a liquid crystal display using the same is provided. The optical compensating film of the present invention is formed by coating an adhesive on a stretched norbornene-based resin film. In the optical compensating film, the adhesive force between the optical compensating film and the adhesive layer is 10 N/20 mm or more.
摘要:
A laminated optical device is a laminate formed of a polarizing layer having a thickness of not larger than 5 &mgr;m, and at least one birefringent layer including either a solid film of oriented liquid crystal or a polymer layer containing oriented liquid crystal. A liquid-crystal display apparatus includes a liquid-crystal display panel, and at least one laminated optical device defined above and disposed on one of opposite surfaces of the liquid-crystal display panel.