摘要:
To provide a structure for achieving high transmittance in a lateral-electric-field mode liquid crystal display device through stably controlling the domains in the terminal parts of comb-shaped electrodes where the liquid crystal molecules rotate in the reverse direction. In the lateral-electric-field mode liquid crystal display device in which common electrodes and pixel electrodes are formed on a same layer, a protrusion part is provided in a direction in an obtuse angle with the comb-shaped electrode and substantially in parallel to a scan line in the terminal part of the comb-shaped electrode of the pixel electrode or the common electrode, a floating electrode is extended in the extending direction of the comb-shaped electrode to overlap with the comb-shaped electrode in the terminal part, and a liquid crystal reverse rotation locked structure is formed with the protrusion part of the comb-shaped electrode and the floating electrode.
摘要:
A pixel electrode connected to a signal line through a switching element and a common electrode connected to a common wiring are disposed, as alternating with each other, within each pixel region. Common potential lines are disposed on level below the signal line with an insulating film in between and also on both sides of the signal line when seen in plan view. A floating electrode is disposed on level above the signal line with a protective film in between, as overlapping the signal line and the common potential lines on both sides of the signal line.
摘要:
In a liquid crystal display unit where a matrix pattern of pixels are defined by gate lines and crosswise data lines, transparent pixel electrodes are formed on the same layer as the data lines and corresponding transparent common electrodes are formed above the transparent pixel electrodes. On the common electrodes the liquid crystal layer is provided. In the aperture of each pixel, the common electrode has a pattern of parallel stripe portions and a peripheral portion outside of the aperture for shielding the field of the corresponding data line. Each pixel electrode cooperates with that parallel stripe portions of the corresponding common electrode to produce inner fringe fields along such parallel stripe portions and has portions that overlap the peripheral portions of the common electrode to produce peripheral fringe fields so that liquid-crystal cells can be uniformly in-plane switched by the inner fringe fields as well as by the peripheral fringe fields.
摘要:
In a liquid crystal display unit where a matrix pattern of pixels are defined by gate lines and crosswise data lines, transparent pixel electrodes are formed on the same layer as the data lines and corresponding transparent common electrodes are formed above the transparent pixel electrodes. On the common electrodes the liquid crystal layer is provided. In the aperture of each pixel, the common electrode has a pattern of parallel stripe portions and a peripheral portion outside of the aperture for shielding the field of the corresponding data line. Each pixel electrode cooperates with that parallel stripe portions of the corresponding common electrode to produce inner fringe fields along such parallel stripe portions and has portions that overlap the peripheral portions of the common electrode to produce peripheral fringe fields so that liquid-crystal cells can be uniformly in-plane switched by the inner fringe fields as well as by the peripheral fringe fields.
摘要:
A pixel electrode connected to a signal line through a switching element and a common electrode connected to a common wiring are disposed, as alternating with each other, within each pixel region. Common potential lines are disposed on level below the signal line with an insulating film in between and also on both sides of the signal line when seen in plan view. A floating electrode is disposed on level above the signal line with a protective film in between, as overlapping the signal line and the common potential lines on both sides of the signal line.
摘要:
A color filter substrate includes a display area for displaying images, a frame area being adjacent to the display area and at least two kinds of laminated pieces which are composed by laminating at least two pieces of colored layers each including a different color. Here, the laminated pieces are arranged in the frame area in a shape of mosaic.
摘要:
Disclosed is an active matrix liquid crystal display device including: an active matrix liquid crystal display device of a normally black mode which includes an active matrix substrate and an opposed substrate and in which a black matrix is not provided on the opposed substrate, wherein a gap between opaque electrodes which are closely located and whose electric potentials are different from each other in a frame portion around a display area of the active matrix substrate is covered with a constant-potential transparent electrode arranged in an upper layer of the gap.
摘要:
A normally-black active-matrix-type liquid crystal display device comprises a first substrate having color layers of three or more colors and a second substrate on which an active-matrix array is formed. The first substrate has a structure, which is devoid of a black matrix, in which the color layers are stacked in a frame portion surrounding the display area. A first light-shielding layer in which color layers of three of more colors are stacked is formed on the frame portion on a side of the display area from which scanning lines are led out and on a side of the display area from which data lines are led out, from among four sides of the display area. A second light-shielding layer in which color layers of two colors are built up is formed on the frame portion on at least one side of the other remaining sides of the display area.
摘要:
In order to improve the light transmissivity above the transparent comb-teeth electrodes provided in an in-plane switching mode active matrix liquid crystal display unit, the liquid crystal gaps above the transparent comb-teeth electrodes are made larger than the liquid crystal gaps between the transparent comb-teeth electrodes.