摘要:
In a liquid crystal display unit where a matrix pattern of pixels are defined by gate lines and crosswise data lines, transparent pixel electrodes are formed on the same layer as the data lines and corresponding transparent common electrodes are formed above the transparent pixel electrodes. On the common electrodes the liquid crystal layer is provided. In the aperture of each pixel, the common electrode has a pattern of parallel stripe portions and a peripheral portion outside of the aperture for shielding the field of the corresponding data line. Each pixel electrode cooperates with that parallel stripe portions of the corresponding common electrode to produce inner fringe fields along such parallel stripe portions and has portions that overlap the peripheral portions of the common electrode to produce peripheral fringe fields so that liquid-crystal cells can be uniformly in-plane switched by the inner fringe fields as well as by the peripheral fringe fields.
摘要:
In a liquid crystal display unit where a matrix pattern of pixels are defined by gate lines and crosswise data lines, transparent pixel electrodes are formed on the same layer as the data lines and corresponding transparent common electrodes are formed above the transparent pixel electrodes. On the common electrodes the liquid crystal layer is provided. In the aperture of each pixel, the common electrode has a pattern of parallel stripe portions and a peripheral portion outside of the aperture for shielding the field of the corresponding data line. Each pixel electrode cooperates with that parallel stripe portions of the corresponding common electrode to produce inner fringe fields along such parallel stripe portions and has portions that overlap the peripheral portions of the common electrode to produce peripheral fringe fields so that liquid-crystal cells can be uniformly in-plane switched by the inner fringe fields as well as by the peripheral fringe fields.
摘要:
A pixel electrode connected to a signal line through a switching element and a common electrode connected to a common wiring are disposed, as alternating with each other, within each pixel region. Common potential lines are disposed on level below the signal line with an insulating film in between and also on both sides of the signal line when seen in plan view. A floating electrode is disposed on level above the signal line with a protective film in between, as overlapping the signal line and the common potential lines on both sides of the signal line.
摘要:
To provide a structure for achieving high transmittance in a lateral-electric-field mode liquid crystal display device through stably controlling the domains in the terminal parts of comb-shaped electrodes where the liquid crystal molecules rotate in the reverse direction. In the lateral-electric-field mode liquid crystal display device in which common electrodes and pixel electrodes are formed on a same layer, a protrusion part is provided in a direction in an obtuse angle with the comb-shaped electrode and substantially in parallel to a scan line in the terminal part of the comb-shaped electrode of the pixel electrode or the common electrode, a floating electrode is extended in the extending direction of the comb-shaped electrode to overlap with the comb-shaped electrode in the terminal part, and a liquid crystal reverse rotation locked structure is formed with the protrusion part of the comb-shaped electrode and the floating electrode.
摘要:
A pixel electrode connected to a signal line through a switching element and a common electrode connected to a common wiring are disposed, as alternating with each other, within each pixel region. Common potential lines are disposed on level below the signal line with an insulating film in between and also on both sides of the signal line when seen in plan view. A floating electrode is disposed on level above the signal line with a protective film in between, as overlapping the signal line and the common potential lines on both sides of the signal line.
摘要:
Disclosed is an active matrix liquid crystal display device including substrates and a liquid crystal layer. The substrate includes: scan signal wiring lines; common signal wiring lines; video signal wiring lines intersecting these wiring lines; and pixels surrounded with the scan signal wiring lines and the video signal wiring lines. Each of pixels includes: a thin film transistor; source electrodes in a layer with the video signal wiring lines; pixel electrodes connected to the source electrodes; and common electrodes connected to the common signal wiring lines. The source electrodes include first parts overlapping the scan signal wiring lines and second parts connecting with the pixel electrodes, which are positioned around central parts between the video signal wiring lines. Molecular axes in the liquid crystal layer rotate under an electric field applied between the pixel electrodes and the common electrodes.
摘要:
A liquid crystal display device includes a first substrate including a thin film transistor, a data line, a pixel electrode, and a common electrode, a second substrate, and liquid crystal sandwiched between the first and second substrates, wherein an image signal is applied to the thin film transistor through the data line to generate an electric field between the pixel electrode receiving the image signal and the common electrode such that the liquid crystal is rotated by the electric field in a plane which is in parallel with the first substrate. The first substrate includes an electrically insulating inorganic film covering the data line therewith, a first island-shaped electrically insulating organic film formed on the electrically insulating inorganic film above the data line, and a shield common electrode covering the first island-shaped electrically insulating organic film therewith and overlapping the data line when viewed vertically.
摘要:
Disclosed is a liquid crystal display device that includes a TFT substrate. A plurality of gate lines and a plurality of common lines extend in a first direction on the TFT substrate. Drain lines extend in a second direction substantially perpendicularly to these lines. Bus lines are located outside a display area and are extending parallel to the drain lines. Common line terminals are provided on either side of each block that is constituted by a predetermined number of gate terminals. The common line terminals and the lead lines therefor are formed on the same layer as the drain lines and are connected to the bus lines on the same layer without any contacts being used. Resistance along the routes taken by common lines can be reduced.
摘要:
A liquid crystal display device includes a first substrate including a thin film transistor, a data line, a pixel electrode, and a common electrode, a second substrate, and liquid crystal sandwiched between the first and second substrates, wherein an image signal is applied to the thin film transistor through the data line to generate an electric field between the pixel electrode receiving the image signal and the common electrode such that the liquid crystal is rotated by the electric field in a plane which is in parallel with the first substrate. The first substrate includes an electrically insulating inorganic film covering the data line therewith, a first island-shaped electrically insulating organic film formed on the electrically insulating inorganic film above the data line, and a shield common electrode covering the first island-shaped electrically insulating organic film therewith and overlapping the data line when viewed vertically.
摘要:
An active matrix type liquid crystal display device in the lateral electric field system is disclosed, in which a high aperture factor is ensured even in a narrow pitch case, while also ensuring high contract and reduced vertical stroke is disclosed. In a liquid crystal display device, in which substantially bank-like third insulating film 208 is formed a video signal line 204 and covered by a common electrode 210, a light shield electrode 213 is formed underneath an extension of a common electrode 210 from an edge of a video signal line 204. With this arrangement, a liquid crystal display device is realized, which shields light from the sides of a step part as well as ensuring high aperture factor and high contrast.