摘要:
A stress estimating system includes a polygon data input unit of polygon data modeling a vascular wall, an interactive analysis condition setting unit for setting the tensile force acting on the vascular wall boundary, blood pressure and constraint estimated as proper on the boundary, a stress analysis unit for obtaining two-dimensional stress by solving a mechanical equilibrium equation with respect to the membrane stress on a curvilinear surface of the vascular wall under the condition given by the polygon data input unit and the interactive analysis condition setting unit, and an interactive visualization unit for displaying a distribution of a stress component designated by a system user. Without assuming any symmetry for the curvilinear configuration and stress distribution, a complicated stress distribution is estimated only out of the mechanical equilibrium equation with respect to membrane stress.
摘要:
A stress estimating system includes a polygon data input unit of polygon data modeling a vascular wall, an interactive analysis condition setting unit for setting the tensile force acting on the vascular wall boundary, blood pressure and constraint estimated as proper on the boundary, a stress analysis unit for obtaining two-dimensional stress by solving a mechanical equilibrium equation with respect to the membrane stress on a curvilinear surface of the vascular wall under the condition given by the polygon data input unit and the interactive analysis condition setting unit, and an interactive visualization unit for displaying a distribution of a stress component designated by a system user. Without assuming any symmetry for the curvilinear configuration and stress distribution, a complicated stress distribution is estimated only out of the mechanical equilibrium equation with respect to membrane stress.
摘要:
This method includes: generating data of a mask surface with respect to visualization data arranged in a virtual three-dimensional space, for calculation values at respective calculation points; identifying, from a first data storage storing, as time-series data, positions of the calculation points and calculation values at the calculation points, a first point whose position is closest to a predetermined point on the mask surface; reading out, from the first data storage, a position of the identified first point in each time; arranging the mask surface in each time based on a direction of a user's sight line and the read position in each time so as to make the mask surface perpendicular to the direction of the user's sight line and have the predetermined point on the mask surface arranged at the read position; and drawing polygon data of the visualization data and the mask surface in time series.
摘要:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.
摘要:
A shape data generation method includes: identifying, from among a plural vertices of a first shape to be transformed, one or plural first vertices satisfying a predetermined condition including a condition that a normal line of a vertex to be processed crosses with a second shape that is a shape of a transformation target, which is identified from image data; transforming the first shape so as to move each of the one or plural identified first vertices a predetermined distance toward a corresponding normal direction of the identified first vertex; and storing data concerning the plural vertices of the transformed first shape after the identifying and the transforming are executed the predetermined number of times.
摘要:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.
摘要:
A disclosed method is a shape data generation method including: identifying, from among a plural vertices of a first shape to be transformed, one or plural first vertices satisfying a predetermined condition including a condition that a normal line of a vertex to be processed crosses with a second shape that is a shape of a transformation target, which is identified from image data; transforming the first shape so as to move each of the one or plural identified first vertices a predetermined distance toward a corresponding normal direction of the identified first vertex; and storing data concerning the plural vertices of the transformed first shape after the identifying and the transforming are executed the predetermined number of times.
摘要:
The disclosed method includes: carrying out scale conversion for a first pixel value of each of a plurality of pixels included in an image to generate a second pixel value of the plurality of pixels; applying a reaction-diffusion equation including a diffusion element and a reaction element that is set according to at least the number of types of regions to be extracted, to the second pixel value of each of plural pixels within a certain region of the image a predetermined number of times to generate a third pixel value of each of the plurality of pixels included in the image; and carrying out scale inverse-conversion that is inverse-conversion of the scale conversion, for the third pixel value of each of the plurality of pixels included in the image to generate a fourth pixel value of the plurality of pixels.
摘要:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.
摘要:
According to an aspect of the embodiment, a user apparatus transmits a parameter on generation of drawing data to each of drawing data generation apparatuses through a network, to assign generation processing of the drawing data to each of drawing data generation apparatuses. The user apparatus receives the drawing data generated based on the parameter by each of the plurality of drawing data generation apparatuses through the network, and displays the received drawing data. The user apparatus changes the parameter corresponding to the displayed drawing data, and displays a new drawing data corresponding to the changed parameter.