摘要:
The present invention relates to an organic light-emitting device capable of suppressing deterioration of organic EL elements at the corners of an emission region.The organic light-emitting device includes a planarization film which planarizes thin film transistors arranged in an emission region where pixels are arranged, an element separation film which defines the pixels formed on the planarization film, a charge transport layer formed on the planarization film in each pixel. The charge transport layer contains any one of alkali metals and alkaline-earth metals and extends to outside of the emission region so as to cover the side surface of a peripheral portion of the planarization film, which is disposed in a peripheral region, the planarization film being formed in the emission region.
摘要:
Provided are an organic light emitting apparatus for use in, for example, a flat device display, and a method of producing the apparatus. The organic light emitting apparatus has sides formed by division at ends of its substrate. Three-dimensional portions are formed on the surface of the substrate along the sides. An inorganic sealing layer is formed to extend toward the three-dimensional portions.
摘要:
Provided are an organic light emitting apparatus for use in, for example, a flat device display, and a method of producing the apparatus. The organic light emitting apparatus has sides formed by division at ends of its substrate. Three-dimensional portions are formed on the surface of the substrate along the sides. An inorganic sealing layer is formed to extend toward the three-dimensional portions.
摘要:
In an electrophoretic display apparatus, a surface of the charged particle, the dispersion medium, and a surface of an inner wall on which charged particles are to be deposited satisfy any one of the following (A) to (D): (A) the charged particle surface is hydrophilic, the dispersion medium is hydrophobic or is hydrophobic and lipophobic, and the inner wall surface is hydrophilic; (B) the charged particle surface is hydrophobic, the dispersion medium is hydrophilic or is hydrophobic and lipophobic and the inner wall surface is hydrophobic; (C) the charged particle surface is hydrophobic and lipophobic, the dispersion medium is hydrophobic or hydrophilic, and the inner wall surface is hydrophobic, with the proviso that when the dispersion medium is hydrophobic, a difference in hydrophobicity between the dispersion medium and the charged particle surface is larger than a difference in hydrophobicity between the inner wall surface and the charged particle surface; and (D) the charged particle surface is hydrophobic and lipophobic, the dispersion medium is hydrophobic or hydrophilic, and the inner wall surface is hydrophobic and lipophobic.
摘要:
A top-emission type organic EL panel has a substrate carrying thin film transistors formed thereon, a plurality of organic EL devices formed on the substrate, each of the organic EL devices including a reflecting electrode, organic compound layers and a transparent electrode arranged in this order from the substrate side, a device separation layer formed in a space separating adjacently located organic EL devices, a protective layer covering the organic EL devices and the device separation layer and a light-shielding layer formed on the protective layer in a display region other than light emitting sections of the organic EL devices so as to be held in contact with the protective layer and cover at least part of lateral surfaces of the device separation layer.
摘要:
Provided are an organic light emitting apparatus for use in, for example, a flat device display, and a method of producing the apparatus. The organic light emitting apparatus has sides formed by division at ends of its substrate. Three-dimensional portions are formed on the surface of the substrate along the sides. An inorganic sealing layer is formed to extend toward the three-dimensional portions.
摘要:
In a light-emitting apparatus including a cap layer disposed on a second electrode and a contact portion, which is disposed in an external region outside the light-emitting region and which electrically connects the second electrode to the drive circuit, the formation end of the cap layer is located in the side nearer to the light-emitting region than is the formation end of the second electrode.
摘要:
An organic EL panel is produced with high productivity by a method in which a first protective film (planarizing layer) can be dehydrated in a shorter time without increasing the number of steps up to the step of forming a second protective film (separation film). The second protective film has regions at which the first protective film is exposed between first electrodes.
摘要:
The present invention relates to an organic light-emitting device capable of suppressing deterioration of organic EL elements at the corners of an emission region.The organic light-emitting device includes a planarization film which planarizes thin film transistors arranged in an emission region where pixels are arranged, an element separation film which defines the pixels formed on the planarization film, a charge transport layer formed on the planarization film in each pixel. The charge transport layer contains any one of alkali metals and alkaline-earth metals and extends to outside of the emission region so as to cover the side surface of a peripheral portion of the planarization film, which is disposed in a peripheral region, the planarization film being formed in the emission region.
摘要:
A top-emission type organic EL panel has a substrate carrying thin film transistors formed thereon, a plurality of organic EL devices formed on the substrate, each of the organic EL devices including a reflecting electrode, organic compound layers and a transparent electrode arranged in this order from the substrate side, a device separation layer formed in a space separating adjacently located organic EL devices, a protective layer covering the organic EL devices and the device separation layer and a light-shielding layer formed on the protective layer in a display region other than light emitting sections of the organic EL devices so as to be held in contact with the protective layer and cover at least part of lateral surfaces of the device separation layer.