摘要:
By copying to a high-frequency band portion (extension band) a low-frequency band portion in which peaking has been set to a sufficiently low state, this encoding device is capable of preventing generation of a spectrum with overly high peaking in the high-frequency band portion, and of generating a high-quality extension band spectrum. This device comprises: a maximum value search unit which searches, in each of multiple sub-bands obtained by dividing the low-frequency band portion of an audio signal and/or music signal below a prescribed frequency, for the maximum value of the amplitude of a first spectrum obtained by decoding first encoded data, which is encoded data in the low-frequency band portion; and an amplitude normalization unit which obtains a normalized spectrum by normalizing, at the maximum values of the amplitude of each sub-band, the first spectrum contained in each sub-band.
摘要:
Provided is a speech/audio encoding apparatus with which it is possible to code a significant frequency domain region with high precision, and to enable high audio quality. A speech/audio encoding apparatus codes a linear prediction coefficient. A significant frequency domain region detection unit identifies a frequency domain region which is aurally significant from the linear prediction coefficient. A frequency domain region repositioning unit repositions the significant frequency domain region which is identified by the significant frequency domain region detection unit. A bit allocation computation unit determines a coding bit allocation on the basis of the significant frequency domain region which is repositioned by the frequency domain region repositioning unit.
摘要:
An encoder apparatus is provided that suppresses the quality degradation of encoding processes. An ultimate selection candidate limiting unit uses the spectrum of an input signal and a residual spectrum to designate a given number of pre-selected suppression factors to a CELP component suppressing unit, which uses the designated suppression factors to generate a suppressed spectrum. A CELP residual signal spectrum calculating unit, to which the suppressed spectrum is input, calculates a residual spectrum. A conversion encoding unit uses the residual spectrum to perform a second encoding process. A distortion evaluating unit determines one of the designated suppression factors by use of the spectrum of a second decoded signal generated by decoding a second code obtained by the second encoding process, and further by use of the suppressed spectrum and the spectrum of the input signal.
摘要:
Disclosed is a decoder capable of improving the sound quality of a decoded sound signal in an encoding method which combines speech encoding and music encoding in a hierarchical structure. A transform-encoding decoding unit (202) decodes transform-encoded data to generate a spectrum of a decoded transform-encoded signal. A band decision unit (203) uses the spectrum of the decoded transform-encoded signal to decide whether each of a plurality of bands in which frequency components of an input signal are divided constitute a first band in which a transform encoded pulse is not established or a second band in which said pulse is established. A CELP component suppression unit (207) suppresses the spectrum of a CELP decoded signal, which is the frequency component of a decoded signal of CELP encoded data, to the extent that suppression in the first band is weaker than suppression in the second band.
摘要:
Provided is an encoder apparatus that can suppress the quality degradation of encoding processes. An ultimate selection candidate limiting unit (109) uses the spectrum of an input signal and a residual spectrum to designate a given number of pre-selected suppression factors to a CELP component suppressing unit (104); the CELP component suppressing unit (104) uses the designated suppression factors to generate a suppressed spectrum; a CELP residual signal spectrum calculating unit (105), to which the suppressed spectrum is input, calculates a residual spectrum; a conversion encoding unit (110) uses the residual spectrum to performs a second encoding process; and a distortion evaluating unit (112) determines one of the designated suppression factors by use of the spectrum of a second decoded signal generated by decoding a second code obtained by the second encoding process and further by use of the suppressed spectrum and the spectrum of the input signal.
摘要:
Provided is a speech/audio encoding apparatus with which it is possible to code a significant frequency domain region with high precision, and to enable high audio quality. A speech/audio encoding apparatus codes a linear prediction coefficient. A significant frequency domain region detection unit identifies a frequency domain region which is aurally significant from the linear prediction coefficient. A frequency domain region repositioning unit repositions the significant frequency domain region which is identified by the significant frequency domain region detection unit. A bit allocation computation unit determines a coding bit allocation on the basis of the significant frequency domain region which is repositioned by the frequency domain region repositioning unit.
摘要:
By copying to a high-frequency band portion (extension band) a low-frequency band portion in which peaking has been set to a sufficiently low state, this encoding device is capable of preventing generation of a spectrum with overly high peaking in the high-frequency band portion, and of generating a high-quality extension band spectrum. This device comprises: a maximum value search unit which searches, in each of multiple sub-bands obtained by dividing the low-frequency band portion of an audio signal and/or music signal below a prescribed frequency, for the maximum value of the amplitude of a first spectrum obtained by decoding first encoded data, which is encoded data in the low-frequency band portion; and an amplitude normalization unit which obtains a normalized spectrum by normalizing, at the maximum values of the amplitude of each sub-band, the first spectrum contained in each sub-band.
摘要:
Disclosed is a decoder capable of improving the sound quality of a decoded sound signal in an encoding method which combines speech encoding and music encoding in a hierarchical structure. A transform-encoding decoding unit (202) decodes transform-encoded data to generate a spectrum of a decoded transform-encoded signal. A band decision unit (203) uses the spectrum of the decoded transform-encoded signal to decide whether each of a plurality of bands in which frequency components of an input signal are divided constitute a first band in which a transform encoded pulse is not established or a second band in which said pulse is established. A CELP component suppression unit (207) suppresses the spectrum of a CELP decoded signal, which is the frequency component of a decoded signal of CELP encoded data, to the extent that suppression in the first band is weaker than suppression in the second band.
摘要:
A light emitting device having little variation in the intensity of light emitted from the light emitting surface is provided. The light emitting device of exemplary embodiments of the present invention includes a laminated body with a first conductivity type layer and a second conductivity type layer, with a light emitting portion therebetween. The light emitting device also includes a metal thin film layer on the second conductivity type layer of the laminated body, and a transparent conductor on the metal thin film layer. The transparent conductor includes a single layer of transparent conductive film. The grain size in the light emitting surface of the transparent conductive film is not less than 30 nm and not greater than 300 nm.
摘要:
There is disclosed a speech switching device capable of improving quality of a decoded signal. In the device, a weighted addition unit (114) outputs a mixed signal of a narrow-band speech signal and a wide-band speech signal when switching the speech signal band. A mixing unit formed by an extended layer decoded speech amplifier (122) and an adder (124) mixes the narrow-band speech signal with the wide-band speech signal while changing the mixing ratio of the narrow-band speech signal and the wide-band speech signal as the time elapses, thereby obtaining a mixed signal. An extended layer decoded speech gain controller (120) variably sets the degree of change of the mixing ratio by the time.