摘要:
A method is disclosed for building a predictive or forward model adapted for predicting the future evolution of a reservoir, comprising: integrating together a plurality of measurements thereby generating an integrated set of deep reading measurements, the integrated set of deep reading measurements being sufficiently deep to be able to probe the reservoir and being self-sufficient in order to enable the building of a reservoir model and its associated parameters; generating a reservoir model and associated parameters in response to the set of deep reading measurements; and receiving, by a reservoir simulator, the reservoir model and, responsive thereto, generating, by the reservoir simulator, the predictive or forward model.
摘要:
A method is disclosed for building a predictive or forward model adapted for predicting the future evolution of a reservoir, comprising: integrating together a plurality of measurements thereby generating an integrated set of deep reading measurements, the integrated set of deep reading measurements being sufficiently deep to be able to probe the reservoir and being self-sufficient in order to enable the building of a reservoir model and its associated parameters; generating a reservoir model and associated parameters in response to the set of deep reading measurements; and receiving, by a reservoir simulator, the reservoir model and, responsive thereto, generating, by the reservoir simulator, the predictive or forward model.
摘要:
A method of upscaling for reservoir simulation is disclosed, comprising: inverting a set of deep reading measurements constrained by upscaled multi-well data, and, in response to the inverting step, upscaling for reservoir simulation.
摘要:
A method of upscaling for reservoir simulation is disclosed, comprising: inverting a set of deep reading measurements constrained by upscaled multi-well data, and, in response to the inverting step, upscaling for reservoir simulation.
摘要:
A method of upscaling for reservoir simulation is disclosed, comprising: inverting a set of deep reading measurements constrained by upscaled multi-well data, and, in response to the inverting step, upscaling for reservoir simulation.
摘要:
A method of upscaling for reservoir simulation is disclosed, comprising: inverting a set of deep reading measurements constrained by upscaled multi-well data, and, in response to the inverting step, upscaling for reservoir simulation.
摘要:
Methods and related systems are described relating to an inversion approach for interpreting the geophysical electromagnetic data. The inversion can be constrained by using a multiphase fluid flow simulator (incorporating pressure data if available) which simulates the fluid flow process and calculates the spatial distribution of the water saturation and the salt concentration, which are in turn transformed into the formation conductivity using a resistivity-saturation formula. In this way, the inverted invasion profile is consistent with the fluid flow physics and moreover accounts for gravity segregation effects. Jointly with the pressure data, the inversion estimates a parametric one-dimensional distribution of permeability and porosity. The fluid flow volume is directly inverted from the fluid-flow-constrained inversion of the electromagnetic data.
摘要:
Methods and related systems are described relating to an inversion approach for interpreting the geophysical electromagnetic data. The inversion can be constrained by using a multiphase fluid flow simulator (incorporating pressure data if available) which simulates the fluid flow process and calculates the spatial distribution of the water saturation and the salt concentration, which are in turn transformed into the formation conductivity using a resistivity-saturation formula. In this way, the inverted invasion profile is consistent with the fluid flow physics and moreover accounts for gravity segregation effects. Jointly with the pressure data, the inversion estimates a parametric one-dimensional distribution of permeability and porosity. The fluid flow volume is directly inverted from the fluid-flow-constrained inversion of the electromagnetic data. The approach is not limited by the traditional interpretation of the formation test, which is based on a single-phase model without taking into account invasion or assuming that the fluid, for example mud-filtrate, has been cleaned up from the formation testing zone. The joint inversion of the electromagnetic and pressure data provides for a more reliable interpretation of formation permeability. One advantage of the approaches described herein, is its possible generalization to three-dimensional geometries, for example dipping beds and highly deviated wells.
摘要:
A system and method for imaging properties of subterranean formations in a wellbore is provided. The system comprises a formation sensor for collecting currents injected into the subterranean formations, the formation sensor positionable on a downhole tool deployable into the wellbore. The system comprises a controller for controlling the formation sensor and a formation imaging unit. The formation imaging unit comprises a current management unit for collecting data from the currents injected into the subterranean formations, the currents having at least two different frequencies. The formation imaging unit comprises a drilling mud data unit for determining at least one drilling mud parameter, a formation data unit for determining at least one formation parameter from the collected data, and an inversion unit for determining at least one formation property by inverting the at least one formation parameter.
摘要:
Characterizing a reservoir with electromagnetic imaging surveys includes normalizing measured voltage data by transmitter moment, sorting the normalized voltage data into common receiver profiles, densely resampling transmitter locations using common positions for the receiver profiles, coarsely resampling the data at discreet transmitter locations, defining a starting model for inversion, weighting the data by a factor, converting the normalized voltage data to ratios, calculating a conductivity image using a ratio inversion method, and verifying that an inversion has converged and the image is geologically reasonable. The image can then be displayed. The invention can be used for cross-well, surface-to-borehole, borehole-to-surface, and single-well (borehole-to-borehole) measurements measurements by which the effects of steel casing are reduced.