Abstract:
Technical challenge in unusual human activity detection task is to rightly identify only unexpected or unusual movements from constant regular movements present in a scene, with most techniques built on understanding that camera is static. However, ego view camera of mobile surveillance robot is in motion as robot navigates. Embodiments herein provide a method and system for anomalous activity detection for mobile surveillance robots by mimicking ‘Konio-Parvocellular-Magno’ cells of the human brain into a NN model, which are responsible for detecting slow, normal, and swift changes in perceived scenes. To detect anomalous activity, the static or normal movements of scene captured by ego view camera are identified as redundant information and only RoI is forwarded for further processing using the Optical flow and SSIM techniques. The NN model mimicking KPM is trained only on the RoI to detect normal or anomalous activity.
Abstract:
Conventionally, Received Signal Strength Indicator (RSSI)-based solutions have been extensively devised in the domains of indoor localization and context-aware applications. These solutions are primarily based on a path-loss attenuation model, with customizations on RSSI processing and are usually regression-based. Further, existing solutions for distance and proximity estimation incorporate data features derived only from the RSSI values themselves with additional features like frequency of occurrence of certain RSSI values thus are less accurate. Present disclosure provides systems and methods that implement a classification model that uses RSSI as well as temporal features derived from the received data packets. The model uses data from multiple devices in different environments for training and can execute proximity decisions on the device itself. The method of the present disclosure monitoring proximity between a plurality of devices implements/uses an effective protocol for decision aggregation to suppress false positive proximity events generated and further stabilizes device's response.
Abstract:
The disclosure herein relates to methods and systems for enabling human-robot interaction (HRI) to resolve task ambiguity. Conventional techniques that initiates continuous dialogue with the human to ask a suitable question based on the observed scene until resolving the ambiguity are limited. The present disclosure use the concept of Talk-to-Resolve (TTR) which initiates a continuous dialogue with the user based on visual uncertainty analysis and by asking a suitable question that convey the veracity of the problem to the user and seek guidance until all the ambiguities are resolved. The suitable question is formulated based on the scene understanding and the argument spans present in the natural language instruction. The present disclosure asks questions in a natural way that not only ensures that the user can understand the type of confusion, the robot is facing; but also ensures minimal and relevant questioning to resolve the ambiguities.
Abstract:
Systems and methods for extending reasoning capability for data analytics in Internet of Things (IoT) platform(s) are provided. Traditional systems and methods for executing IoT analytics tasks suffer as IoT analytics techniques are generated in different programming language platforms, and this leads to a manual intervention or an asynchronous and sequential analysis of IoT analytics task(s). Embodiments of the method disclosed provide for overcoming the limitations faced by the traditional systems and methods by dynamically creating procedural functions from a plurality of programming languages upon determining an absence of pre-defined procedural functions, and extracting, using the dynamically created procedural functions, one or more semantic rules in a real-time, wherein the one or more semantic rules extend a reasoning capability for executing the one or more data analytics tasks in a plurality of IoT platforms.
Abstract:
A method and system has been provided for recommending features for developing an IoT analytics application. The method follows a deep like architecture. It comprises of three distinct layers. First layer is for input signal processing and other two layers are for feature reduction. The time domain, frequency domain and time-frequency domain features are extracted from the input signal. The invention uses multiple feature selection methods so that the union of the recommended features by these feature selection methods is significantly lesser than the initial set of features. The best feature combination is recommended using an exhaustive search.
Abstract:
The embodiments of present disclosure herein address unresolved problem of cognitive navigation strategies for a telepresence robotic system. This includes giving instruction remotely over network to go to a point in an indoor space, to go an area, to go to an object. Also, human robot interaction to give and understand interaction is not integrated in a common telepresence framework. The embodiments herein provide a telepresence robotic system empowered with a smart navigation which is based on in situ intelligent visual semantic mapping of the live scene captured by a robot. It further presents an edge-centric software architecture of a teledrive comprising a speech recognition based HRI, a navigation module and a real-time WebRTC based communication framework that holds the entire telepresence robotic system together. Additionally, the disclosure provides a robot independent API calls via device driver ROS, making the offering hardware independent and capable of running in any robot.
Abstract:
The disclosure herein relates to methods and systems for enabling human-robot interaction (HRI) to resolve task ambiguity. Conventional techniques that initiates continuous dialogue with the human to ask a suitable question based on the observed scene until resolving the ambiguity are limited. The present disclosure use the concept of Talk-to-Resolve (TTR) which initiates a continuous dialogue with the user based on visual uncertainty analysis and by asking a suitable question that convey the veracity of the problem to the user and seek guidance until all the ambiguities are resolved. The suitable question is formulated based on the scene understanding and the argument spans present in the natural language instruction. The present disclosure asks questions in a natural way that not only ensures that the user can understand the type of confusion, the robot is facing; but also ensures minimal and relevant questioning to resolve the ambiguities.
Abstract:
The present disclosure provides system and method for executing SPARQL query on a SPARQL engine. For executing the SPARQL query, a function may be instantly integrated with the SPARQL query which leads to extension of the SPARQL query. The extension may be achieved through a user friendly interface which may allow transparent integration of code (i.e., the function) in any language such as JAVA, C, C++ and the like, supporting a particular functionality. The system may integrate the code by addition of newly added code to the SPARQL library after validation. Further, the system may analyze the functionality associated with the code to optimize decision making of a user. The system may further support auto compilation and rating of the functions based on the user feedback and re-usability of the code working in a collaborative environment. Further the system may enable also enable to integrate external tools and web services.
Abstract:
Disclosed is a method and a system for stream reasoning a plurality of data streams. The system comprises a processor and a memory coupled to the processor. The processor is capable of executing a plurality of modules embodied on the memory. The plurality of modules comprises an event module and a application managed window module. The event module is configured to receive a data stream associated with an event from a stream reasoner application. The data stream provides factual information about the event. Further, the data stream comprises a request. The request may be an add request or a delete request. The application managed window module is configured to insert the request associated with the event or delete a prior request associated with the event from the memory based upon a type of the request.
Abstract:
One of the major artifacts that pushed Information Technology companies ahead of its competitors is undoubtedly contextual domain knowledge. When a new development problem comes to an IT team, how problem solving and steps of action can be automatically formulated is the major area of research. A method and system for utilizing domain knowledge to identify solution to a problem has been provided. The problem is reformulated as recommending a workflow like a pipeline of connected steps, by leveraging contextual domain knowledge and technical knowledge, finally planning and scheduling solutions steps, given a problem of a domain & use case. This is achieved by Contextual sequence-aware recommendation of steps, backed by semantic web technologies and pattern recognition steps. Finally a plan is derived by automated planning techniques which can be executed based on software orchestration by connecting a repository of re-usable annotated code blocks.