Abstract:
Data cataloging has become a necessity for empowering organizations with analytical ability. Conventional cataloging systems may fail to provide proper visualization of data to the different stakeholders of an organization. The present disclosure provides a hierarchical dynamic cataloging system so that visualization of data at different levels would be possible for different stake holders. In the present disclosure, a hierarchical structure of algorithms and multiple stake holders along with relevant metadata is generated. Further, a catalog is generated by performing a mapping across components comprised in the hierarchical structure and identifying relationship across the components based on mapping. The catalog gets dynamically updated and provides a dynamic view of the algorithms and associated metadata to the multiple stakeholders of an organization. Further, the disclosure supports reuse of already developed algorithms across multiple applications and domains resulting in optimization of resources and time.
Abstract:
Systems and methods for obtaining optimal mother wavelets for facilitating machine learning tasks. The traditional systems and methods provide for selecting a mother wavelet and signal classification using some traditional techniques and methods but none them provide for selecting an optimal mother wavelet to facilitate machine learning tasks. Embodiments of the present disclosure provide for obtaining an optimal mother wavelet to facilitate machine learning tasks by computing values of energy and entropy based upon labelled datasets and a probable set of mother wavelets, computing values of centroids and standard deviations based upon the values of energy and entropy, computing a set of distance values and normalizing the set of distance values and obtaining the optimal mother wavelet based upon the set of distance values for performing a wavelet transform and further facilitating machine learning tasks by classifying or regressing, a new set of signal classes, corresponding to a new set of signals.
Abstract:
Development of sensor data based descriptive and prescriptive system involves machine learning tasks like classification and regression. Any such system development requires the involvement of different stake-holders for obtaining features. Such features typically obtained are not interpretable for 1-D sensor signals. Embodiments of the present disclosure provide systems and methods that perform signal analysis for features extraction and interpretation thereof wherein input is raw signal data where origin of a feature is traced to signal data, and mapped to domain/application knowledge. Feature(s) are extracted using deep learning network(s) and machine learning (ML) model(s) are implemented for sensor data analysis to perform causality analysis for prognostics. Layer(s) (say last layer) of Deep Network(s) contains the automatically derived features that can be used for ML tasks. Parameter(s) tuning is performed based on the set of features that were recommended by the system to determined performance of systems (or applications) under consideration.
Abstract:
A system and method for identifying an unknown person based on a static posture of the unknown person is described. The method includes receiving data of N skeleton joints of the unknown person from a skeleton recording device. The method further includes identifying the static posture of the unknown person. The method includes dividing a skeleton structure of the unknown person in a plurality of body parts based on joint types of the skeleton structure. In addition, the method includes extracting feature vectors for each of the joint type from each of the plurality of body parts. The method further includes identifying the unknown person based on comparison of the feature vectors for the unknown person with one of a constrained feature dataset and an unconstrained feature dataset for a plurality of known persons.
Abstract:
Conventionally, applying analytics on dataset is the scarcity of labelled data. With increase of data there is cost fact effecting nature of servicing required for data (e.g., cost in terms of resource and time and effort is high for data annotation). Though data is analysed, it may be prone to error. Present disclosure provides systems/methods for reducing volume of data to be annotated for time series data thereby reducing time and effort of resources, thus resulting in effective utilization of system's resources (e.g., memory, processor, etc.). More specifically, the method of the present disclosure adaptively modifies the volume of the data to be annotated based on the performance of the unsupervised learning method applied in the system. Moreover, in the absence of an annotation mechanism for clusters of time series data, meta data associated with the time series data is utilized for annotation and validation of dataset.
Abstract:
A method for monitoring physiological parameters associated with a subject using a hand held device is described herein. In an implementation, the method includes obtaining a plurality of sample photoplethysmographic (PPG) features associated with a sample subject, from a video of a body part of the sample subject. From among the plurality of sample PPG features, at least one relevant sample PPG feature associated with the physiological parameter, is selected based on a ground truth value of the physiological parameter for the subject. Further, based on the at least one relevant sample PPG feature and the ground truth value of the physiological parameter, a mathematical model indicative of a correlation between the relevant sample PPG feature and the physiological parameter, is determined. The mathematical model can be deployed for monitoring the physiological parameter in real time.
Abstract:
A system and method for a real-time prognosis of a vehicle comprising a personal communication device comprising an arbitrarily oriented three-axis accelerometer configured to capture a pitch motion and/or roll motion of the vehicle and an onboard diagnostics system communicably connected with the personal communication device enabling bi-directional communication. The personal communication device comprising a processor configured for geometric mapping of a three dimensional Cartesian coordinate of the three-axis accelerometer with the vehicle. The processor virtually orients the coordinates of three-axis accelerometer to coincide with the coordinates of the vehicle. The arbitrarily oriented three-axis accelerometer is configured to capture a road condition and a driver behavior using a sampling rate between 4 Hertz (Hz) to 10 Hertz (Hz). The system for the real-time prognosis of the vehicle, wherein the real-time prognosis utilizes at least one predictive analysis model to determine real-time prognosis for the said vehicle.
Abstract:
A System and method for identifying one or more human activities in a human-computer interacting environment. Skeleton points associated with a human are received. A data variation factor for the skeleton points is calculated, and a set of skeleton points is selected based on the data variation factor. One or more features are defined from the set of skeleton points by identifying a variance in coordinates of the set of skeleton points by using one or more statistical parameters. The one or more features are used to identify the one or more human activities.
Abstract:
The present disclosure relates to a system and a method for detection of touching characters in a media, characterized by segmentation of adjoining character spaces. In the very first step, an aspect ratio is calculated for each connected component. A candidate touching position of each character is determined by calculating a threshold aspect ratio for each character. Further, a candidate cut column is determined based on a relation between column pixel densities and corresponding length thereof the column in order to segment the touching characters at the candidate cut column.
Abstract:
Disclosed is a method and system for automatic algorithm selection for image processing. The invention discloses the method and system for automatically selecting the correct algorithm(s) for a varying requirement of the image for processing. The selection of algorithm is completely automatic and guided by a plurality of machine learning approaches. The system here is configured to pre-process plurality of images for creating a training data. Next, the test image is extracted, pre-processed and matched for assessing the best possible match of algorithm for processing.