摘要:
A method of producing 1,1,1,3,3-pentafluoropropane wherein 1,1,1,3,3-pentafluoropropane is obtained by reacting at least one selected from the group consisting of fluorinated and chlorinated propane and chlorinated propane expressed by a general formula of CX3CH2CHX2 (where X in this general formula indicates either a fluorine atom or a chlorine atom, but all of X's can never represent fluorine atoms at the same time) with a fluorinated antimony chloride. There is provided an economical and efficient method of producing 1,1,1,3,3-pentafluoropropane with high yield, which is an alternative compound to CFC's and HCFC's and is important in industry as a blowing agent, a refrigerant, a detergent, and a propellant that does not destroy the ozone in the ozone layer.
摘要:
One or more materials selected from 1,1,1,3,3-pentachloropropane, 1,1,3,3-tetrachloropropene and 1,3,3,3-tetrachloropropene are used as the specific materials described above. Before submitting the materials and HF to a fluorination reaction, almost all water is removed from them. To continuously manufacture useful intended products efficiently as well as to prevent deactivation of the catalyst and the accumulation of organic substances with high boiling points when manufacturing said useful 1,1,1,3,3-pentafluoropropane and/or 1-chloro-3,3,3-trifluoropropene, by fluorinating the specific materials with HF in the presence of a catalyst.
摘要:
A method of preparation for 1,1,1,3,3-pentafluoropropane (HFC-245fa) wherein the first process gives mainly 1,3,3,3-tetrafluoropropene (1234ze) by reacting 1-chloro-3, 3,3,-trifluoropropene (1233zd) with hydrogen fluoride in the gas phase and subsequently the second process gives 1,1,1,3,3-pentafluoropropane (HFC-245fa) by reacting 1,3,3,3-tetrafluoropropene (1234ze), separated as a component that does not contain hydrogen chloride from crude products obtained by the first process, with hydrogen fluoride in the gas phase. To provide a process that is capable of preparing economically HFC-245fa which does not require the separation of HFC-245fa and 1233zd.
摘要:
In a process for producing 1,1,1,3,3-pentafluoropropane which has a liquid-phase reaction step for fluorination of 1,1,1,3,3-pentahalopropane (wherein at least one of halogen atoms is not fluorine) with HF in the presence of antimony pentahalide catalyst in a reactor to obtain a reaction mixture comprising 1,1,1,3,3-pentafluoropropane and the antimony pentahalide catalyst, the fluorination is conducted at a reaction temperature less than 50° C.
摘要:
HFC-245fa is effectively separated from the mixture comprising 1,1,1,3,3-pentafluoropropane (HFC-245fa) and HF through a purification process comprising contacting at least one extraction agent selected from the group consisting of (a) a compound corresponds to the general formula (I): CxFyHz, (b) a compound corresponds to the general formula (II): R1R2R3N, (c) an compound corresponds to the general formula (III): R4OR5 and (d) a compound corresponds to the general formula (IV): ClClmHn with a mixture comprising 1,1,1,3,3-pentafluoropropane and hydrogen fluoride so as to form a liquid mixture and separating the liquid mixture into two liquid layers, followed by obtaining an extraction agent phase including HFC-245fa and the extraction agent as the main components, and separatively recovering HFC-245fa from the extraction agent phase.
摘要:
In a process for producing a hydrogen-containing fluorinated hydrocarbon in which a halogenated hydrocarbon reaction raw material, which includes a chlorinated alkene and/or a hydrogen-containing chlorinated alkane, is subjected to a fluorination reaction with hydrogen fluoride in a liquid phase in a reactor in the presence of a fluorination catalyst to obtain a reaction mixture which includes the hydrogen-containing fluorinated hydrocarbon, the reactor to be used has a portion which is able to contact with the reaction mixture, at least a part of this portion being made of an alloy material of 18 to 20% by weight of chromium, 18 to 20% by weight of molybdenum, 1.5 to 2.2% by weight of at least one element selected from niobium and tantalum and the balance of nickel.
摘要:
A mixture comprising at least 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is subjected to a distillation operation, and thereby, a distillate comprising an azeotropic composition consisting substantially of 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is obtained and a bottom product comprising 1,1,1,3,3-pentafluoropropane or 1,1,1-trifluoro-3-chloro-2-propene which each is separated and purified.
摘要:
There is provided an azeotropic mixture having 1,1,1,3,3-pentafluoropropane and hydrogen fluoride. Further, there is provided a process of separating/purifying R-245fa and/or HF from a mixture of R-245fa and HF wherein the mixture of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride is subjected to a distillation step so that a distillate is obtained which has the azeotropic mixture of 1,1,1,3,3-pentafluoropropane and hydrogen fluoride, and a bottom product is obtained which has separated/purified 1,1,1,3,3-pentafluoropropane or hydrogen fluoride.
摘要:
A mixture comprising at least 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is subjected to a distillation operation, and thereby, a distillate comprising an azeotropic composition consisting substantially of 1,1,1,3,3-pentafluoropropane and 1,1,1-trifluoro-3-chloro-2-propene is obtained and a bottom product comprising 1,1,1,3,3-pentafluoropropane or 1,1,1-trifluoro-3-chloro-2-propene which each is separated and purified.
摘要:
The present invention provides a process for preparing a fluorine-containing halogenated hydrocarbon compound by fluorinating, in a reaction field where an antimony halide compound represented by the general formula: SbClpF5−p (I) wherein p is a value within a range from 0 to 2, and hydrogen fluoride and a halogenated hydrocarbon compound as a raw material exist, the halogenated hydrocarbon compound in a molar ratio of the antimony halide compound to hydrogen fluoride within a range from 40/60 to 90/10. According to this process, a fluorine-containing halogenated hydrocarbon compound (HFC), which is important as a substitute compound of CFC or HCFC, can be prepared economically advantageously with good selectivity while suppressing a corrosive action of a reaction vessel.