摘要:
An object of the present invention is to achieve thinning of an auxiliary recording layer while maintaining the function thereof to improve SNR.A representative configuration of a perpendicular magnetic disk according to the present invention includes, on abase, a granular magnetic layer 160, and a auxiliary recording layer 180 disposed as an upper layer of the granular magnetic layer 160, wherein the granular magnetic layer 160 has a granular structure in which a grain boundary portion is formed by segregation of a non-magnetic substance containing an oxide as a main component around magnetic particles containing a CoCrPt alloy grown in a columnar shape as a main component, and the auxiliary recording layer 180 contains a CoCrPtRu alloy as a main component and has a film thickness of 1.5 nm to 4.0 nm.
摘要:
A magnetic recording medium for perpendicular magnetic recording includes a substrate, a granular layer having magnetic crystal grains exhibiting perpendicular magnetic anisotropy and nonmagnetic substances for magnetically separating the magnetic crystal grains from each other at grain boundaries of the magnetic crystal grains, and a continuous film layer having magnetic grains to be exchange-coupled to the magnetic crystal grains, the grain boundary width of the magnetic grains being smaller than that of the magnetic crystal grains, wherein separation regions for magnetically separating tracks from each other are disposed in regions between the tracks of the magnetic recording medium in at least the continuous film layer.
摘要:
A method for manufacturing a magnetic recording medium includes the steps of (a) forming a perpendicular magnetic recording layer and (b) applying an ion beam to regions between tracks of the perpendicular magnetic recording layer so as to form separation regions for magnetically separating the tracks from each other. In the step (a), a continuous film layer composed of a multilayer film is formed, and CoB layers and Pd layers are laminated in the multilayer film. In the step (b), the CoB layers and the Pd layers are melted by the ion beam so as to form an alloy of metals contained in the CoB layers and the Pd layers to thereby form the separation regions.