Abstract:
A method, network device and terminal device for providing remaining minimum system information (RMSI) in a wireless network. A method comprises determining whether a SS/PBCH block in the SS burst set configures the RMSI. In response to that the SS/PBCH block configures the RMSI, transmitting one or more repeated RMSI within a first periodicity.
Abstract:
An antenna system includes at least a first antenna processing unit, APU1, and a second antenna processing unit, APU2, adjacently connected to each other through a serialized front haul. Each one of the APU1 and APU2 has at least two antenna elements. The antenna elements of APU1 are connected to their respective Radio Frequency, RF, chains via a first beamforming unit, and the antenna elements of APU2 are connected to their respective RF chains via a second beamforming unit. A network node configures the first beamforming unit and the second beamforming unit such that an absolute value of an angular difference between at least one of the beam directions generated by the first beamforming unit and each of the beam directions generated by the second beamforming unit exceeds or is equal to a threshold value.
Abstract:
A method performed by a radio network node for reducing energy consumption in communications with wireless devices is provided. The radio network node includes a dual-polarized antenna array, which dual-polarized antenna array has a first sub-set antenna array and a second sub-set antenna array for communication with the wireless devices. The radio network node decides whether to (a) deactivate or (b) not deactivate the second sub-set antenna array, to reduce the energy consumption, based on ongoing communications in the radio network node with wireless devices. The first sub-set antenna array and the second sub-set antenna array have a total antenna pattern that has a deviation that is below a threshold value.
Abstract:
A method for managing dedicated and common system information that includes receiving a first message comprising a first set of parameters associated with system information. The first set of parameters have a first validity. The method also includes deriving a stored set of parameters based, at least in part, on the first set of parameters and its associated validity. The method additionally includes receiving a second message comprising a second set of parameters associated with system information. The second set of parameters have a second validity. The method further includes, upon the second validity superseding the first validity, modifying the stored set of parameters.
Abstract:
A method for requesting system information. The method comprises transmitting a request for at least one system information block group, each of which comprises one or more system information blocks, from a user terminal to a network node. The one or more system information blocks is/are grouped according to a feature of the one or more system information blocks. The method may further comprise receiving one or more system information block groups from the network node. The one or more system information block groups may comprise the at least one system information block group.
Abstract:
The present disclosure introduces a method implemented at a user equipment. The method includes: determining, within a physical downlink control channel, one or more bits of a downlink control information that indicates a corresponding physical downlink shared channel carrying a remaining minimum system information or other system information. A user equipment and a corresponding network node are also introduced.
Abstract:
A method performed by a wireless device for determining a search space for a physical control channel in a wireless communications network is provided. The wireless device is configured with a first search space of a physical control channel which first search space is associated with a first synchronization signal. The wireless device attempts to receive the first synchronization signal from a first network node. The wireless device then determines a search space for a physical control channel based on whether or not the attempt to receive said first synchronization signal was successful. When the attempt to receive said first synchronization signal was successful determining a first search space for the physical control channel, and when the attempt to receive said first synchronization signal was not successful determining a second search space for any one or more out of: the physical control channel and a second physical control channel.
Abstract:
A first network node (111) and method therein for monitoring inactive mode coverage for a user equipment (130) in a wireless communication network (100) are disclosed. A plurality of network nodes (111, 112) operate in the wireless communication network (100) and the first network node (111) is a serving network node for the user equipment (130). The first network node (111) receives an inactive mode coverage monitoring report. The first network node (111) analyzes the inactive mode coverage monitoring report and determines whether the user equipment (130) has inactive mode coverage based on the outcome of analysing the inactive mode coverage monitoring report.
Abstract:
A method performed by a first wireless node for enabling relaying by a relaying wireless node of data intended for reception by a second wireless node. The first wireless node, second wireless node and relaying wireless node each operate in a wireless communications network. The first wireless node transmits a first payload data to the relaying wireless node. The first payload data comprises a second payload data intended for the second wireless node. The first payload data further comprises an indicator, which indicator indicates to the relaying wireless node how to relay the second payload data. The indicator comprises parameters related to radio transmission of the second payload data.
Abstract:
A method and intermediate network node provide a service requested by a mobile terminal in a wireless communications network. The intermediate network node has a processing unit and a memory containing instructions executable by the processing unit. The intermediate network node receives a first request for a service from the mobile terminal, and receives application software configured to be executed at the intermediate network node to provide the mobile terminal with at least part of the requested service. The intermediate network node provides the mobile terminal with the at least part of the requested service. A subsequent request related to the service of the mobile terminal terminates at the intermediate network node, and provides the mobile terminal with at least part of the service requested in the subsequent request on behalf of a provider of the service.