Abstract:
A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or non-liquid crystalline materials, wherein the liquid crystal formulation has an I→SmA*→SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., a tilt angle of about 22.5°±6° or about 45°±6°, a spontaneous polarization of less than about 50 nC/cm2., and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described. The device has a stable bookshelf geometry, bistable switching, and isothermal electric field alignment, a response time of less than 500 μs when switched between two stable states, and an electric drive field of less than about 30 V/μm.
Abstract:
A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or organic non-liquid crystalline materials, wherein the liquid crystal formulation is nano-phase segregated in the SmC* phase, has an I→SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., has a tilt angle of about 22.5°±6° or about 45°±6°, and has a spontaneous polarization of less than about 50 nC/cm2, and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described. The device has a stable bookshelf geometry, bistable switching, and isothermal electric field alignment, a response time of less than 500 μs when switched between two stable states, and an electric drive field of less than about 30 V/μm.
Abstract:
A liquid crystal electro-optic device. The liquid crystal electro-optic device comprises at least one liquid crystal cell comprising: a pair of substrates having a gap therebetween; a pair of electrodes, the pair of electrodes positioned on one of the substrates or one electrode positioned on each substrate; and a ferroelectric, oligosiloxane liquid crystal material disposed in the gap between the pair of substrates, the ferroelectric, oligosiloxane liquid crystal material exhibiting an I-♦ SmC* phase sequence wherein the liquid crystal electro-optic device is bistable in operation. The invention also involves a method for making a liquid crystal electro-optic device.
Abstract:
The present invention provides a method and apparatus for transforming optical wave modes. The apparatus includes a substrate and a first layer of waveguiding material above the substrate, the first layer having a first index of refraction, a first horizontal dimension, and a first vertical dimension. The apparatus also includes a second layer of waveguiding material adjacent the first layer, the second layer having a second index of refraction, a second horizontal dimension, and a second vertical dimension.
Abstract:
A liquid crystal formulation is described. The liquid crystal formulation comprises a first oligosiloxane-modified nano-phase segregating liquid crystalline material; and at least one additional material selected from a second oligosiloxane-modified nano-phase segregating liquid crystalline material, non-liquid crystalline oligosiloxane-modified materials, organic liquid crystalline materials, or organic non-liquid crystalline materials, wherein the liquid crystal formulation is nano-phase segregated in the SmC* phase, has an I→SmC* phase transition, with a SmC* temperature range from about 15° C. to about 35° C., has a tilt angle of about 22.5°±6° or about 45°±6°, and has a spontaneous polarization of less than about 50 nC/cm2, and a rotational viscosity of less than about 600 cP. Devices containing liquid crystal formulations are also described. The device has a stable bookshelf geometry, bistable switching, and isothermal electric field alignment, a response time of less than 500 μs when switched between two stable states, and an electric drive field of less than about 30 V/μm.
Abstract:
An optical waveguide Bragg grating spectrally selective reflector is made by ion beam implantation through a photolithographic mask to raise locally the effective refractive index of the guide. This contrasts with the standard method, which uses UV light to raise the index through the agency of the photo-refractive effect.
Abstract:
An injection laser assembly mounted upon a crystal substrate [10] employing a back facet monitor is disclosed. A graded index lens [34] focuses light from the, typically, high in diversion and low intensity rays output from the back facet of the laser [30]. To allow repeatable and efficient coupling the graded index lens [34] is mounted within a groove defined in the crystal. Several configurations for mounting a photodiode sensor [P1,P2] are possible.
Abstract:
A liquid crystal electro-optic device. The liquid crystal electro-optic device comprises at least one liquid crystal cell comprising: a pair of substrates having a gap therebetween; a pair of electrodes, the pair of electrodes positioned on one of the substrates or one electrode positioned on each substrate; and a ferroelectric, oligosiloxane liquid crystal material disposed in the gap between the pair of substrates, the ferroelectric, oligosiloxane liquid crystal material exhibiting an I-♦ SmC* phase sequence wherein the liquid crystal electro-optic device is bistable in operation. The invention also involves a method for making a liquid crystal electro-optic device.
Abstract:
The present invention provides a method and apparatus for filtering an optical signal. The method includes receiving at least one input optical signal, forming first and second optical signals using the at least one input optical signal, and modifying at least one portion of the first optical signal using a plurality of non-waveguiding electro-optic phase adjusters. The method also includes forming an output optical signal by combining the first optical signal, including the at least one modified portion of the first optical signal, with the second optical signal.
Abstract:
The present invention provides an electro-optic gap-cell for waveguide deployment, including a first optical transmission medium formed in at least a portion of a device layer, a second optical transmission medium formed in at least a portion of the device layer, and a slot formed in at least a portion of the device layer, wherein the slot has at least one curved edge, and wherein the slot is disposed adjacent to the first and second transmission media.