Abstract:
A projector includes: a discharge lamp; a discharge lamp driving unit that drives the discharge lamp by supplying a driving power to the discharge lamp through supply of a driving current thereto; and a control unit that controls the discharge lamp driving unit based on plural operating modes in which maximum values of the driving power are different from one another, wherein the control unit switches the operating mode through a transition period and controls the discharge lamp driving unit so that an average value of a frequency of the driving current in the former half of the transition period becomes larger than an average value of a frequency of the driving current in the latter half of the transition period.
Abstract:
A projector that outputs a first picture and a second picture alternately, wherein a control section performs first control and second control, controls a discharge lamp driving section. In the first control and the second control, the absolute value of a drive current is relatively small in a first period and relatively large in a second period. In the first control, the energy provided to a first electrode in the second period is greater than the energy provided to the second electrode in the second period. In the second control, the energy provided to the second electrode in the second period is greater than the energy provided to the first electrode in the second period.
Abstract:
In at least one embodiment of the disclosure, a discharge lamp lighting device comprises a discharge lamp driving section and a control unit. The control unit alternately performs a first DC driving processing and a first AC driving processing in a first section of the driving current. The control unit alternately performs a second DC driving processing and a second AC driving processing in a second section of the driving current different from the first section. The control unit temporally changes a length of at least one of: (i) a period for which the first DC driving processing is performed, and (ii) a period for which the second DC driving processing is performed.
Abstract:
In at least one embodiment of the disclosure, a discharge lamp lighting device comprises a discharge lamp driving section, a state detecting section that detects a deterioration state of an electrode of a discharge lamp, and a control unit. The control unit alternately performs a first DC driving processing and a first AC driving processing in a first section of the driving current. The control unit alternately performs a second DC driving processing and a second AC driving processing in a second section of the driving current different from the first section. According to a progress of the deterioration state of the electrode, the control unit increases a length of at least one of: (i) a period for which the first DC driving processing is performed, and (ii) a period for which the second DC driving processing is performed.
Abstract:
In at least one embodiment of the disclosure, a discharge lamp lighting device includes a discharge lamp driving unit that drives a discharge lamp by supplying an AC driving current to the discharge lamp. A memory unit is configured to store driving parameters for the AC driving current. A control unit is configured to control the discharge lamp driving unit based on the driving parameters stored in the memory unit. The driving parameters comprise a range of holding time values, each holding time value representing a time period in which the AC driving current is to be continuously maintained at a same polarity. Upon a predetermined time condition, the control unit selects one of the holding time values based on a predetermined probability and controls the discharge lamp driving unit based on the selected holding time value.
Abstract:
A discharge lamp lighting device includes: a power control circuit adapted to generate discharge lamp driving power; an alternating current conversion circuit adapted to execute polarity reversal on a direct current output from the power control circuit, thereby generating an alternating current; and a control section adapted to perform alternating current conversion control of controlling the polarity reversal timing of the alternating current, wherein the control section executes a steady drive process of executing the alternating current conversion control at a given frequency, a first low frequency drive process of executing the alternating current conversion control at a first low frequency driving frequency lower than the given frequency, and starting from a first polarity and ending with the first polarity, and a second low frequency drive process of executing the alternating current conversion control at a second low frequency driving frequency lower than the given frequency, and starting from a second polarity and ending with the second polarity.
Abstract:
In at least one embodiment of the disclosure, a discharge lamp driving device includes a discharge lamp lighting unit configured to supply power to a discharge lamp while alternately switching a polarity of a voltage applied across two electrodes of the discharge lamp. A controller performs a modulation control of the power in accordance with a power ratio characterized by the power supplied in a polarity switching period. The controller starts the modulation control at a predetermined time after the power supplied to the discharge lamp reaches a predetermined power value.
Abstract:
A light source device is provided. The light source device has: a discharge lamp that emits light by discharge in an interelectrode space between a first electrode and a second electrode; a main mirror arranged at the first electrode side that reflects light flux generated by the discharge in the interelectrode space so as to emit the light flux to an area to be illuminated; a sub-mirror arranged at the second electrode side facing opposite the main mirror that reflects the light flux from the interelectrode space toward the interelectrode space; and a driver that supplies alternating current to the first and the second electrodes, and changes duty ratio of the alternating current supplied to the first and the second electrodes in accordance with a predetermined pattern. In the light source device, maximum value of time ratio of a first anode period in which the first electrode works as anode to one cycle of the alternating current is larger than maximum value of time ratio of a second anode period in which the second electrode works as anode to the one cycle of the alternating current.
Abstract:
A catalyst 1 is provided in a gas passage 4 for communicating between a gas flow-in unit 12 and a gas flow-out unit 13, and the catalyst 1 is heated by a heater 2, and a temperature sensor 3 for detecting the temperature of the heater 2 is provided inside the heater 2. By feeding power to the heater 2, the wall temperature of the heater 2 is raised to heat the catalyst 1, and then malodorous gas containing odor substances is passed in from the gas flow-in unit 12. The malodorous gas passes through the catalyst 1 in the gas passage 4 to be oxidized to be harmless and odorless, and is discharged from the gas flow-out unit 13.
Abstract:
A projector includes a light source lamp, a cooling device adapted to feed a cooling fluid to the light source lamp to thereby cool the light source lamp, a lighting control section adapted to supply the light source lamp with the lamp electric power having either one of a first electric power value and a second electric power value higher than the first electric power value to thereby light the light source lamp, and a cooling control section adapted to control the cooling device, and the cooling control section controls the cooling device so that the cooling fluid at a flow rate lower than a set flow rate set in accordance with the second electric power value is fed to the light source lamp during a predetermined period after the lamp electric power is switched from the first electric power value to the second electric power value.