摘要:
A multi-frequency inductive sensing system can be used for spectrographic material analysis of a conductive target material (such as tissue) based on electrical impedance spectroscopy. An inductive senor can be driven with an excitation current at multiple sensor excitation frequencies (ω) to project a time-varying magnetic field into a sensing area on the surface of the target material, inducing eddy currents within the target material. The inductive sensor can be characterized by a sensor impedance Z(ω) as a function of the sensor excitation frequency (ω), and the resulting induced eddy currents. Multiple sensor impedance Zs(ω) measurements, at the multiple sensor excitation frequencies (ω), can be determined, which represent electromagnetic properties of the target material (such as permittivity ε, permeability μ, and resistivity ρ), based on the induced eddy currents. The multiple sensor excitation frequencies (ω), and corresponding multiple sensor impedance Zs(ω) measurements, can be selected for particular target penetration depths.
摘要:
Remote inductive sensing uses a sensor resonator with a remote sense inductor coupled to a resonator capacitor through a shielded transmission line. The T-line includes a signal line and a shield return line: the sense inductor is connected at a T-line sensing end between the signal line and the shield return line, and the resonator capacitor is connected at a T-line terminal end to at least the signal line. An inductance-to-data converter (IDC) is connected at the T-line terminal end to the signal line and shield return line (set to a common mode voltage). In operation, the IDC drives oscillation signals over the signal line to the sensor resonator to sustain a resonance state, with the sense inductor projecting a magnetic sensing field, and converts changes in oscillation drive signals, representing changes in resonance state resulting from a sensed condition, into sensor data corresponding to the sensed condition.
摘要:
An inductive coded lock system includes an inductive lock mechanism, and a conductive key/target. The inductive lock mechanism includes multiple inductor coils and sensor circuitry. Each inductor coil is operable to project a magnetic field defining a sensing area proximate to the inductor/coil, the inductor coils being spatially arranged to define a key/target sensing area incorporating each inductor coil sensing area. The sensor circuitry drives inductor coils, and measures sensor response (such as with an inductance comparator) to a key/target inserted within the key/target sensing area, including detecting an unlock condition corresponding to a pre-defined coded lock pattern. The key/target includes active and inactive areas (such as conductive/nonconductive) corresponding spatially to the sensing areas in the key target sensing area, the active and inactive areas arranged in a pre-defined coded key pattern corresponding to the pre-defined coded lock pattern. The coded lock and key patterns can be binary coded.
摘要:
A multi-frequency inductive sensing system can be used for spectrographic material analysis of a conductive target material (such as tissue) based on electrical impedance spectroscopy. An inductive sensor can be driven with an excitation current at multiple sensor excitation frequencies (ω) to project a time-varying magnetic field into a sensing area on the surface of the target material, inducing eddy currents within the target material. The inductive sensor can be characterized by a sensor impedance Z(ω) as a function of the sensor excitation frequency (ω), and the resulting induced eddy currents. Multiple sensor impedance Zs(ω) measurements, at the multiple sensor excitation frequencies (ω), can be determined, which represent electromagnetic properties of the target material (such as permittivity ε, permeability μ, and resistivity ρ), based on the induced eddy currents. The multiple sensor excitation frequencies (ω), and corresponding multiple sensor impedance Zs(ω) measurements, can be selected for particular target penetration depths.
摘要:
Inductive position sensing uses inductance multiplication with series connected sensor coils. In one embodiment, a first sensing domain area is established in a first target plane using first and second sensor coils disposed on a longitudinal axis, on opposite sides of the first target plane and connected in series, so that a series-combined inductance is a multiple of a sum of the respective first and second coil inductances. Target position within the first sensing domain area of the first target plane is detected based on the series-combined inductance of the first and second coils, which changes as the target moves within the first sensing domain area of the first target plane. Further sensitivity can be achieved by additional coils, series connected on the same longitudinal axis, each coil pair defining a sensing area on a respective target plane intermediate the coils.
摘要:
A position detecting system detects and responds to the movement of a target through a sensing domain area of a plane. The movement causes the amount of the target that lies within a sensing domain area to change. A portion of the target always lies within at least one of the sensing domain areas of the plane.
摘要:
Inductive position sensing uses inductance multiplication with series connected sensor coils. In one embodiment, a first sensing domain area is established in a first target plane using first and second sensor coils disposed on a longitudinal axis, on opposite sides of the first target plane and connected in series, so that a series-combined inductance is a multiple of a sum of the respective first and second coil inductances. Target position within the first sensing domain area of the first target plane is detected based on the series-combined inductance of the first and second coils, which changes as the target moves within the first sensing domain area of the first target plane. Further sensitivity can be achieved by additional coils, series connected on the same longitudinal axis, each coil pair defining a sensing area on a respective target plane intermediate the coils.
摘要:
A position detecting system detects and responds to the movement of a target through a sensing domain area of a plane. The movement causes the amount of the target that lies within a sensing domain area to change. A portion of the target always lies within at least one of the sensing domain areas of the plane.
摘要:
A multi-frequency inductive sensing system can be used for spectrographic material analysis of a conductive target material (such as tissue) based on electrical impedance spectroscopy. An inductive senor can be driven with an excitation current at multiple sensor excitation frequencies (ω) to project a time-varying magnetic field into a sensing area on the surface of the target material, inducing eddy currents within the target material. The inductive sensor can be characterized by a sensor impedance Z(ω) as a function of the sensor excitation frequency (ω), and the resulting induced eddy currents. Multiple sensor impedance Zs(ω) measurements, at the multiple sensor excitation frequencies (ω), can be determined, which represent electromagnetic properties of the target material (such as permittivity ε, permeability μ, and resistivity ρ), based on the induced eddy currents. The multiple sensor excitation frequencies (ω), and corresponding multiple sensor impedance Zs(ω) measurements, can be selected for particular target penetration depths.
摘要:
A rotational sensing system is adaptable to sensing motor rotation based on eddy current sensing. An axial target surface is incorporated with the motor rotor, and includes one or more conductive target segment(s). An inductive sensor is mounted adjacent the axial target surface, and includes one or more inductive sense coil(s), such that rotor rotation rotates the target segment(s) laterally under the sense coil(s). An inductance-to-digital converter (IDC) drives sensor excitation current to project a magnetic sensing field toward the rotating axial target surface. Sensor response is characterized by successive sensor phase cycles that cycle between LMIN in which a sense coil is aligned with a target segment, and LMAX in which the sense coil is misaligned. The number of sensor phase cycles in a rotor rotation cycle corresponds to the number of target segments. The IDC converts sensor response measurements from successive sensor phase cycles into rotational data.