Method for creating a wettable surface for improved reliability in QFN packages

    公开(公告)号:US12255077B2

    公开(公告)日:2025-03-18

    申请号:US18488990

    申请日:2023-10-17

    Abstract: The disclosed principles provide for implementing low-cost and fast metallic printing processes into the QFN and other no-leads package assembly flow to selectively print solderable material in areas that would otherwise be susceptible to corrosion and thus pose reliability risks. The problem of copper corrosion and poor BLR performance in no-leads packages because of remaining exposed copper areas after package singulation is solved by employing selective metallic printing processes in the assembly flow to coat all risk-prone areas with solder material. For example, for no-leads packages that are formed using printed leadframes, solder can be deposited through inkjet, screen, stencil, or photonic printing into the grooves which are formed after passivating the packages at the strip level. The singulating occurs through the grooves having solder printed therein, and results in wettable upper and sidewall surfaces of the outer ends of the leadframe for each package.

    PACKAGED ELECTRONIC DEVICE WITH INTEGRAL ANTENNA

    公开(公告)号:US20220285844A1

    公开(公告)日:2022-09-08

    申请号:US17190521

    申请日:2021-03-03

    Abstract: An antenna apparatus in a packaged electronic device includes: an antenna assembly with a conductive antenna, and an insulator; a conductive feed line extending on or in a substrate; a conductive layer with an aperture on or in the substrate between the conductive feed line and an exposed portion of the conductive antenna; and a support structure mounted to a portion of the substrate and to a portion of the antenna assembly to support the antenna assembly and to provide an air gap between the exposed portion of the conductive antenna and the aperture.

    METHOD FOR CREATING A WETTABLE SURFACE FOR IMPROVED RELIABILITY IN QFN PACKAGES

    公开(公告)号:US20210166951A1

    公开(公告)日:2021-06-03

    申请号:US17172043

    申请日:2021-02-09

    Abstract: The disclosed principles provide for implementing low-cost and fast metallic printing processes into the QFN and other no-leads package assembly flow to selectively print solderable material in areas that would otherwise be susceptible to corrosion and thus pose reliability risks. The problem of copper corrosion and poor BLR performance in no-leads packages because of remaining exposed copper areas after package singulation is solved by employing selective metallic printing processes in the assembly flow to coat all risk-prone areas with solder material. For example, for no-leads packages that are formed using printed leadframes, solder can be deposited through inkjet, screen, stencil, or photonic printing into the grooves which are formed after passivating the packages at the strip level. The singulating occurs through the grooves having solder printed therein, and results in wettable upper and sidewall surfaces of the outer ends of the leadframe for each package.

    NANOPARTICLE BACKSIDE DIE ADHESION LAYER
    7.
    发明申请

    公开(公告)号:US20190279955A1

    公开(公告)日:2019-09-12

    申请号:US15914761

    申请日:2018-03-07

    Abstract: In described examples, a microelectronic device includes a microelectronic die with a die attach surface. The microelectronic device further includes a nanoparticle layer coupled to the die attach surface. The nanoparticle layer may be in direct contact with the die attach surface, or may be coupled to the die attach surface through an intermediate layer, such as an adhesion layer or a contact metal layer. The nanoparticle layer includes nanoparticles having adjacent nanoparticles adhered to each other. The microelectronic die is attached to a package substrate by a die attach material. The die attach material extends into the nanoparticle layer and contacts at least a portion of the nanoparticles.

    Method for creating a wettable surface for improved reliability in QFN packages

    公开(公告)号:US11791168B2

    公开(公告)日:2023-10-17

    申请号:US17172043

    申请日:2021-02-09

    CPC classification number: H01L21/4821 H01L23/49582

    Abstract: The disclosed principles provide for implementing low-cost and fast metallic printing processes into the QFN and other no-leads package assembly flow to selectively print solderable material in areas that would otherwise be susceptible to corrosion and thus pose reliability risks. The problem of copper corrosion and poor BLR performance in no-leads packages because of remaining exposed copper areas after package singulation is solved by employing selective metallic printing processes in the assembly flow to coat all risk-prone areas with solder material. For example, for no-leads packages that are formed using printed leadframes, solder can be deposited through inkjet, screen, stencil, or photonic printing into the grooves which are formed after passivating the packages at the strip level. The singulating occurs through the grooves having solder printed therein, and results in wettable upper and sidewall surfaces of the outer ends of the leadframe for each package.

    Nanoparticle backside die adhesion layer

    公开(公告)号:US11031364B2

    公开(公告)日:2021-06-08

    申请号:US15914761

    申请日:2018-03-07

    Abstract: In described examples, a microelectronic device includes a microelectronic die with a die attach surface. The microelectronic device further includes a nanoparticle layer coupled to the die attach surface. The nanoparticle layer may be in direct contact with the die attach surface, or may be coupled to the die attach surface through an intermediate layer, such as an adhesion layer or a contact metal layer. The nanoparticle layer includes nanoparticles having adjacent nanoparticles adhered to each other. The microelectronic die is attached to a package substrate by a die attach material. The die attach material extends into the nanoparticle layer and contacts at least a portion of the nanoparticles.

    Method for creating a wettable surface for improved reliability in QFN packages

    公开(公告)号:US10916448B2

    公开(公告)日:2021-02-09

    申请号:US16027558

    申请日:2018-07-05

    Abstract: The disclosed principles provide for implementing low-cost and fast metallic printing processes into the QFN and other no-leads package assembly flow to selectively print solderable material in areas that would otherwise be susceptible to corrosion and thus pose reliability risks. The problem of copper corrosion and poor BLR performance in no-leads packages because of remaining exposed copper areas after package singulation is solved by employing selective metallic printing processes in the assembly flow to coat all risk-prone areas with solder material. For example, for no-leads packages that are formed using printed leadframes, solder can be deposited through inkjet, screen, stencil, or photonic printing into the grooves which are formed after passivating the packages at the strip level. The singulating occurs through the grooves having solder printed therein, and results in wettable upper and sidewall surfaces of the outer ends of the leadframe for each package.

Patent Agency Ranking