-
1.
公开(公告)号:US20220212256A1
公开(公告)日:2022-07-07
申请号:US17655636
申请日:2022-03-21
摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
-
2.
公开(公告)号:US11571747B2
公开(公告)日:2023-02-07
申请号:US17655636
申请日:2022-03-21
摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
-
3.
公开(公告)号:US11311943B2
公开(公告)日:2022-04-26
申请号:US16540243
申请日:2019-08-14
摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
-
公开(公告)号:US20230234137A1
公开(公告)日:2023-07-27
申请号:US18002883
申请日:2021-07-29
发明人: Edward Reutzel , Jan Petrich , Abdalla R. Nassar , Shashi Phoha , David J. Corbin , Jacob P. Morgan , Evan P. Diewald , Robert W. Smith , Zackary Keller Snow
IPC分类号: B22F10/85 , B22F10/38 , B22F12/90 , B22F10/366
CPC分类号: B22F10/85 , B22F10/38 , B22F12/90 , B22F10/366 , B22F2999/00 , B33Y40/00
摘要: Embodiments relate to in-situ process monitoring of a part being made via additive manufacturing. The process can involve capturing computed tomography (CT) scans of a post-built part. A neural network (NN) can be used during the build of a new part to process multi-modal sensor data. Spatial and temporal registration techniques can be used to align the data to x,y,z coordinates on the build plate. During the build of the part, the multi-modal sensor data can be superimposed on the build plate. Machine learning can be used to train the NN to correlate the sensor data to a defect label or a non-defect label by looking to certain patterns in the sensor data at the x,y,z location to identify a defect in the CT scan at x,y,z. The NN can then be used to predict where defects are or will occur during an actual build of a part.
-
公开(公告)号:US10046394B2
公开(公告)日:2018-08-14
申请号:US14852928
申请日:2015-09-14
摘要: A method for manufacturing material voxel-by-voxel using directed-energy deposition is given. Using the method, unsupported structures, via voxel-wise directed-energy deposition, with steep overhangs is described and demonstrated. Methods for forming arbitrarily-complex structures and shaped voxels and surfaces are also given. A method for forming materials with internally-varying properties is also given. The method utilizes a pulsed or modulated, rather than continuous-wave energy source, thus allowing rapid solidification of voxels, rather than contours, hatches or tracks. Tuning of pulsing or modulation, material flow, and deposition-path parameters allows the buildup of unsupported material using standard directed-energy deposition processing heads and 3-axis stages, for example. The methods are demonstrated using a modified-directed-energy-deposition processes and is applicable to powder-bed for the buildup of three-dimensional components, repair and the addition of features to existing components.
-
6.
公开(公告)号:US11940325B2
公开(公告)日:2024-03-26
申请号:US17870051
申请日:2022-07-21
IPC分类号: G01J3/02 , B22F10/20 , B22F10/25 , B22F10/28 , B22F12/44 , B22F12/45 , B22F12/90 , B33Y50/02 , G01J3/36 , G01J3/443 , B22F10/30 , B22F10/366 , B22F10/38 , B33Y10/00 , G01J3/12
CPC分类号: G01J3/36 , B22F10/20 , B22F10/25 , B22F10/28 , B22F12/44 , B22F12/45 , B22F12/90 , B33Y50/02 , G01J3/0208 , G01J3/443 , B22F10/30 , B22F10/366 , B22F10/38 , B33Y10/00 , G01J2003/1213
摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
-
7.
公开(公告)号:US20230204420A1
公开(公告)日:2023-06-29
申请号:US17870051
申请日:2022-07-21
IPC分类号: G01J3/36 , G01J3/02 , G01J3/443 , B33Y50/02 , B22F10/25 , B22F10/28 , B22F12/44 , B22F12/45 , B22F12/90 , B22F10/20
CPC分类号: G01J3/36 , G01J3/0208 , G01J3/443 , B33Y50/02 , B22F10/25 , B22F10/28 , B22F12/44 , B22F12/45 , B22F12/90 , B22F10/20 , B33Y10/00
摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
-
8.
公开(公告)号:US20200061710A1
公开(公告)日:2020-02-27
申请号:US16540243
申请日:2019-08-14
摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
-
-
-
-
-
-
-