Multi-Spectral Method For Detection of Anomalies During Powder Bed Fusion Additive Manufacturing

    公开(公告)号:US20220212256A1

    公开(公告)日:2022-07-07

    申请号:US17655636

    申请日:2022-03-21

    摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.

    Multi-spectral method for detection of anomalies during powder bed fusion additive manufacturing

    公开(公告)号:US11571747B2

    公开(公告)日:2023-02-07

    申请号:US17655636

    申请日:2022-03-21

    摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.

    Multi-spectral method for detection of anomalies during powder bed fusion additive manufacturing

    公开(公告)号:US11311943B2

    公开(公告)日:2022-04-26

    申请号:US16540243

    申请日:2019-08-14

    摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.

    Method for manufacturing overhanging material by pulsed, voxel-wise buildup

    公开(公告)号:US10046394B2

    公开(公告)日:2018-08-14

    申请号:US14852928

    申请日:2015-09-14

    摘要: A method for manufacturing material voxel-by-voxel using directed-energy deposition is given. Using the method, unsupported structures, via voxel-wise directed-energy deposition, with steep overhangs is described and demonstrated. Methods for forming arbitrarily-complex structures and shaped voxels and surfaces are also given. A method for forming materials with internally-varying properties is also given. The method utilizes a pulsed or modulated, rather than continuous-wave energy source, thus allowing rapid solidification of voxels, rather than contours, hatches or tracks. Tuning of pulsing or modulation, material flow, and deposition-path parameters allows the buildup of unsupported material using standard directed-energy deposition processing heads and 3-axis stages, for example. The methods are demonstrated using a modified-directed-energy-deposition processes and is applicable to powder-bed for the buildup of three-dimensional components, repair and the addition of features to existing components.

    MULTI-SPECTRAL METHOD FOR DETECTION OF ANOMALIES DURING POWDER BED FUSION ADDITIVE MANUFACTURING

    公开(公告)号:US20200061710A1

    公开(公告)日:2020-02-27

    申请号:US16540243

    申请日:2019-08-14

    摘要: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.