摘要:
The resonator (1) for a timepiece results from coupling a first, low frequency resonator (2) with a second, higher frequency resonator (3). The first resonator (2) has a first balance (4) associated with a first balance spring (5). The second resonator (3) has a second balance (6) associated with a second balance spring (7). A third balance spring is arranged between the first (4) and second (6) balances to couple said first (2) and second (3) resonators.
摘要:
The resonator (1) for a timepiece results from coupling a first, low frequency resonator (2) with a second, higher frequency resonator (3). The first resonator (2) has a first balance (4) associated with a first balance spring (5). The second resonator (3) has a second balance (6) associated with a second balance spring (7). A third balance spring is arranged between the first (4) and second (6) balances to couple said first (2) and second (3) resonators.
摘要:
The invention relates to a balance spring (1, 1′) including a first hairspring (3, 3′) the curve of which extends in a first plane, a second hairspring (5, 5′) the curve of which extends in a second plane parallel to the first plane, an attachment member (4, 4′) securing one end of the curve of the first hairspring (3, 3′) to one end of the curve of the second hairspring (5, 5′) so as to form a dual balance spring (1, 1′) in series. According to the invention, the curve of the first hairspring (3, 3′) and the curve of the second hairspring (5, 5′) each include a continuously variable pitch and are symmetrical relative to a straight line (A) parallel to the first and second planes and passing through the median plane of projection of the attachment member (4, 4′) and in that each curve respects the relations. Px(0)=0 and Py(1)=2Py(0) in order to reduce displacements of the centre of mass thereof during contraction and expansion. The invention concerns the field of sprung balance resonators.
摘要:
The invention relates to a balance spring (1, 1′) including a first hairspring (3, 3′) the curve of which extends in a first plane, a second hairspring (5, 5′) the curve of which extends in a second plane parallel to the first plane, an attachment member (4, 4′) securing one end of the curve of the first hairspring (3, 3′) to one end of the curve of the second hairspring (5, 5′) so as to form a dual balance spring (1, 1′) in series. According to the invention, the curve of the first hairspring (3, 3′) and the curve of the second hairspring (5, 5′) each include a continuously variable pitch and are symmetrical relative to a straight line (A) parallel to the first and second planes and passing through the median plane of projection of the attachment member (4, 4′) and in that each curve respects the relations. Px(0)=0 and Py(1)=2Py(0) in order to reduce displacements of the centre of mass thereof during contraction and expansion.The invention concerns the field of sprung balance resonators.
摘要:
The spiral includes turns of rectangular section, whose pitch p and/or thickness e can vary from the inside curve towards the outside curve, or whose winding can deviate from the line of a perfect spiral. The inside curve can also be extended by a self-locking washer for fixing the spiral on the balance arbour with no play. The spiral is manufactured by photolithography and galvanic growth, or by micro-machining an amorphous or crystalline material such as a silicon wafer.
摘要:
Along the inner lying rotor trailing surface (21) of an annular rotor (20) are successively provided regions (26a-c) of small wall thicknesses (29) and regions (25a-c) of larger wall thicknesses, which differ with respect to the acoustic impedance spectrum. During the state of operation, i.e. when the rotor (20) turns, the mentioned regions (24a-c; 25a-c) are excited alternately by the piezoelectric excitor (15) of the stator (13). The acoustic impedance spectrum which changes periodically, influences the electrical impedance spectrum of the motor (10) in an analog manner. These changes are measured via the voltage supply connections of the motor (10) and are interpreted as relative positional changes between the stator (13) and the rotor (20).