摘要:
An optical switching device is provided. The device includes an input stage (1) comprising broadcast modules (MD1-MD3) that provide duplicates of the same multiplex, an output stage (2) comprising programmable multiplexer modules (OWS1-OWS3) having inputs associated with respective broadcast modules, and an intermediate stage (3) connecting each programmable multiplexer module input that is associated with a broadcast module to an output of the associated broadcast module. Each broadcast module includes a programmable demultiplexer module (IWS1-IWS3) having a transit output (B1), and a selection output (B2) and a star coupler (SC1-SC3). The transit output (B1) is connected to a first input (C1) of the coupler and an input and an output of a processing device (RG, RG′) are respectively connected to a selection output (B2) and to a second input (C2) of the coupler.
摘要:
The device includes: an input stage (1) comprising broadcast modules (MD1-MD3) that provide duplicates of the same multiplex, an output stage (2) comprising programmable multiplexer modules (OWS1-OWS3) having inputs associated with respective broadcast modules, and an intermediate stage (3) connecting each programmable multiplexer module input that is associated with a broadcast module to an output of the associated broadcast module. Each broadcast module includes a programmable demultiplexer module (IWS1-IWS3) having a transit output (B1) and a selection output (B2) and a star coupler (SC1-SC3). The transit output (B1) is connected to a first input (C1) of the coupler and an input and an output of a processing device (RG, RG′) are respectively connected to a selection output (B2) and to a second input (C2) of the coupler. Application to semitransparent nodes of hybrid optical networks.
摘要:
A device (D) is dedicated to optical switching in a switching node (NC) of a transparent optical network. This device (D) comprises i) at least one input port adapted to be coupled to an upstream optical line (FE1-FE4) dedicated to the transport of multiplexed channels, ii) at least one exit point, iii) switching means (MC) coupling each input port at least to each exit point, and iv) processing means (MT1-MT4) adapted to add to the channels that reach each input port a signature including first information representative of that switching node (NC), and where applicable the input port that received them.
摘要:
An optical switching device comprises i) a first stage comprising N first distribution modules each having a first input coupled to an optical fiber dedicated to the transport of multiplexes of channels of different wavelengths, and n first outputs each delivering at least one of the multiplexed channels received by the first input, ii) a second stage comprising Q second selection modules each having a second input receiving at least one channel of one wavelength, and q second outputs selectively delivering one of the multiplexed channels received by the second input, with Q≧N×n, and iii) a third stage comprising a spatial switcher having, on the one hand, M third inputs and M′ third outputs, with M′≧M, at least some of the first outputs being respectively coupled to third inputs and at least some of the second inputs being respectively coupled to third outputs, and, on the other hand, coupling means designed to couple each of the third inputs to one of the third outputs according to a chosen input/output combination, which can be modifiable.
摘要:
A device (D) dedicated to optical switching in a switching node (NC) comprises at least one first switching matrix (MC1) and one second switching matrix (MC2) coupled to each other and each comprising i) a first stage including Ni diffusion modules each having a first input and Mi first outputs and ii) a second stage including Ni fusion modules each having Ni second inputs each coupled to one of the Mi first outputs of one of the Ni diffusion modules via an optical line, at least one third input and one second output. The second stage of at least one of the matrices comprises at least one additional fusion module having Ni second inputs adapted to apply optical power adjustment and one second output. At least one optical line (LS1) couples the second output of an additional fusion module of one of the matrices (MC1) to a third input of each of the Ni fusion modules of the other matrix (MC2).
摘要:
The present invention refers to a method for adjusting power levels of channels (15) in an optical link (7) of an optical network comprising at least one optical amplifier (9) wherein the power distribution among the channels (15) of the optical link (7) is achieved in function of: target power levels based on the features of corresponding connections and of link physical features, total available power in said at least one amplifier (9), features of control means allowing the power distribution, and wherein for a channel corresponding to a connection having a higher vulnerability characterizing parameter, the tolerated difference between an actual channel power level and the target power level is lower than for a channel corresponding to a connection having a lower vulnerability characterizing parameter.
摘要:
A device (D) dedicated to optical switching in a switching node (NC) comprises at least one first switching matrix (MC1) and one second switching matrix (MC2) coupled to each other and each comprising i) a first stage including Ni diffusion modules each having a first input and Mi first outputs and ii) a second stage including Ni fusion modules each having Ni second inputs each coupled to one of the Mi first outputs of one of the Ni diffusion modules via an optical line, at least one third input and one second output. The second stage of at least one of the matrices comprises at least one additional fusion module having Ni second inputs adapted to apply optical power adjustment and one second output. At least one optical line (LS1) couples the second output of an additional fusion module of one of the matrices (MC1) to a third input of each of the Ni fusion modules of the other matrix (MC2).
摘要:
The present invention refers to a method for adjusting power levels of channels (15) in an optical link (7) of an optical network comprising at least one optical amplifier (9) wherein the power distribution among the channels (15) of the optical link (7) is achieved in function of: target power levels based on the features of corresponding connections and of link physical features, total available power in said at least one amplifier (9), features of control means allowing the power distribution, and wherein for a channel corresponding to a connection having a higher vulnerability characterizing parameter, the tolerated difference between an actual channel power level and the target power level is lower than for a channel corresponding to a connection having a lower vulnerability characterizing parameter.
摘要:
An optical connection path surveillance device for a transparent optical network includes analysis means (80, 81) adapted to detect node signatures carried by an optical signal in transit at a point of said network, each node signature including information uniquely associated with a switching node of the network. The analysis means include calculation means (81) adapted to determine a number of hops from said detected node signatures and error detection means (81) adapted to compare said number of hops to a predetermined threshold in order to detect a routing error in relation to said optical signal if said threshold is exceeded. In one embodiment, a surveillance device detects looped paths on the basis of the detected node signatures.
摘要:
A method for controlling the establishment of a connection within an optical network comprising the steps consisting in: transmitting a control message node-to-node along a path of said connection from an input node (A) to an output node (D) of the connection, said control message comprising a step indication field to indicate a current step (60) of the connection establishment, performing a local operation (62, 63) corresponding to said step indication field within at least one node, transmitting a step acknowledgment to the connection's input node after having completed said local operation, in response to receiving the step acknowledgment, transmitting another control message node-to-node from the input node, wherein said step indication field indicates a following step (70) within a sequence of steps.