摘要:
A positron emission tomography apparatus (100) includes a plurality of radiation sensitive detector systems (106) and selective trigger systems (120). The selective trigger systems identify detector signals resulting from detected gamma radiation (310) while disregarding spurious detector signals (310). In one implementation, the apparatus (100) includes a time to digital converter which decomposes a measurement time interval (Tmax) according to a binary hierarchical decomposition of level H, where H is an integer greater than equal to one.
摘要:
A positron emission tomography apparatus (100) includes a plurality of radiation sensitive detector systems (106) and selective trigger systems (120). The selective trigger systems identify detector signals resulting from detected gamma radiation (310) while disregarding spurious detector signals (310). In one implementation, the apparatus (100) includes a time to digital converter which decomposes a measurement time interval (Tmax) according to a binary hierarchical decomposition of level H, where H is an integer greater than equal to one.
摘要:
The invention relates to a radiation detector that is particularly suited for energy resolved single X-ray photon detection in a CT scanner. In a preferred embodiment, the detector has an array of scintillator elements in which incident X-ray photons are converted into bursts of optical photons. Pixels associated to the scintillator elements determine the numbers of optical photons they receive within predetermined acquisition intervals. These numbers can then be digitally processed to detect single X-ray photons and to determine their energy. The pixels may particularly be realized by avalanche photodiodes with associated digital electronic circuits for data processing.
摘要:
The invention relates to a radiation detector (100) that is particularly suited for energy resolved single X-ray photon detection in a CT scanner. In a preferred embodiment, the detector (100) comprises an array of scintillator elements (S k) in which incident X-ray photons (X) are converted into bursts of optical photons (hn). Pixels (P k) associated to the scintillator elements (S k) determine the numbers of optical photons they receive within predetermined acquisition intervals. These numbers can then be digitally processed to detect single X-ray photons (X) and to determine their energy. The pixels may particularly be realized by avalanche photodiodes with associated digital electronic circuits for data processing.
摘要:
A light transmitting element such as a scintillating element (50) or an optic fiber (50′) has side surfaces coated with a metamaterial (62) which has an index of refraction less than 1 and preferably close to zero to light transmitted in the light transmitting element. A photonic crystal (80) or metamaterial layer optically couples a light output face of the light transmitting element with a light sensitive element (52), such as a silicon photomultiplier (SiPM). A thin metal layer (64) blocks optical communication between adjacent scintillating elements (50) in a radiation detector (22), such as a radiation detector of a nuclear imaging system (10).
摘要:
An apparatus (208) includes a plurality of photosensors (310). Photon trigger signals produced in response to signals from the sensors are received by a trigger line network that includes segment (302), intermediate (304), and master (306) lines. The trigger network is configured to reduce a temporal skew introduced by the trigger line network. Validation logic (324) provides a trigger validation output signal (610).
摘要:
A family of photodetectors includes at least first and second members. In one embodiment, the family includes members having different pixel sizes. In another, the family includes members having the same pixel size. The detection efficiency of the detectors is optimized to provide a desired energy resolution at one or more energies of interest.
摘要:
A light transmitting element such as a scintillating element (50) or an optic fiber (50′) has side surfaces coated with a metamaterial (62) which has an index of refraction less than 1 and preferably close to zero to light transmitted in the light transmitting element. A photonic crystal (80) or metamaterial layer optically couples a light output face of the light transmitting element with a light sensitive element (52), such as a silicon photomultiplier (SiPM). A thin metal layer (64) blocks optical communication between adjacent scintillating elements (50) in a radiation detector (22), such as a radiation detector of a nuclear imaging system (10).
摘要:
A family of photodetectors includes at least first and second members. In one embodiment, the family includes members having different pixel sizes. In another, the family includes members having the same pixel size. The detection efficiency of the detectors is optimized to provide a desired energy resolution at one or more energies of interest.
摘要:
An apparatus (208) includes a plurality of photosensors (310). Photon trigger signals produced in response to signals from the sensors are received by a trigger line network that includes segment (302), intermediate (304), and master (306) lines. The trigger network is configured to reduce a temporal skew introduced by the trigger line network. Validation logic (324) provides a trigger validation output signal (610).