摘要:
A method for calculating multi-directional composites in FEM simulations for designing a high pressure tank. The method starts by reading data for the simulation including fiber orientation and composite material properties. Then, for every FEM element, the method calculates the stiffness of directional plies and converts the calculated stiffness into a local coordinate system for each ply. The method then calculates the stiffness of packets of fiber orientations as a layer set-up. The method then calculates engineering constants for the layer set-up and the equivalents for the stress limit for the layer set-up. The method then uses the engineering constants to calculate the stresses on the FEM elements and determines whether the calculated stress is above a predetermined stress limit for each element. If the calculated stress is above the stress limit, then the algorithm switches to a complex calculation of stress that calculates the stress for each ply.
摘要:
A method for calculating multi-directional composites in FEM simulations for designing a high pressure tank. The method starts by reading data for the simulation including fiber orientation and composite material properties. Then, for every FEM element, the method calculates the stiffness of directional plies and converts the calculated stiffness into a local coordinate system for each ply. The method then calculates the stiffness of packets of fiber orientations as a layer set-up. The method then calculates engineering constants for the layer set-up and the equivalents for the stress limit for the layer set-up. The method then uses the engineering constants to calculate the stresses on the FEM elements and determines whether the calculated stress is above a predetermined stress limit for each element. If the calculated stress is above the stress limit, then the algorithm switches to a complex calculation of stress that calculates the stress for each ply.
摘要:
A composite pressure vessel assembly method includes fitting an end portion of a tubular member into an annular slot formed in an end cap. Sealant may be in the annular slot. The end cap includes an annular groove in an exterior surface of the end cap body portion. A first material layer is formed on an exterior surface of the tubular member. The first material layer includes a first composite material including fibers oriented circumferentially to the tubular member. A second material layer is formed on the first material layer with a portion of the second material layer being disposed into the annular groove, and includes a second composite material including fibers oriented axially to the tubular member. A third material layer is formed adjacent the second material layer and in the annular groove, and includes a third composite material including fibers having an orientation circumferential to the tubular member.
摘要:
A composite pressure vessel assembly method includes fitting an end portion of a tubular member into an annular slot formed in an end cap. Sealant may be in the annular slot. The end cap includes an annular groove in an exterior surface of the end cap body portion. A first material layer is formed on an exterior surface of the tubular member. The first material layer includes a first composite material including fibers oriented circumferentially to the tubular member. A second material layer is formed on the first material layer with a portion of the second material layer being disposed into the annular groove, and includes a second composite material including fibers oriented axially to the tubular member. A third material layer is formed adjacent the second material layer and in the annular groove, and includes a third composite material including fibers having an orientation circumferential to the tubular member.
摘要:
A fuel vessel assembly for a fuel cell-powered vehicle and a method of increasing the structural rigidity of a fuel cell-powered vehicle. A vessel for storage of hydrogen or related fuel cell-compatible fuel is rigidly attachable to a vehicular frame or related load-bearing structure through one or more shells that extend from the vessel. Loads imparted to one or more of the shell, vessel frame are transmitted between them through the connection between the assembly and the frame such that a load-bearing capability inherent in the frame is enhanced by the assembly.
摘要:
A fuel vessel assembly for a fuel cell-powered vehicle and a method of increasing the structural rigidity of a fuel cell-powered vehicle. A vessel for storage of hydrogen or related fuel cell-compatible fuel is rigidly attachable to a vehicular frame or related load-bearing structure through one or more shells that extend from the vessel. Loads imparted to one or more of the shell, vessel frame are transmitted between them through the connection between the assembly and the frame such that a load-bearing capability inherent in the frame is enhanced by the assembly.
摘要:
A storage system for a vehicle is disclosed. The storage system includes a pressure vessel, a plurality of mounting systems disposed on each end of the pressure vessel, each mounting system having a vessel shell having an end coupled to the end of the pressure vessel, a mounting shell having a first end coupled to the vehicle and a second end coupled to another end of the vessel shell, and an impact element formed in one of the vessel shell and the mounting shell having a yield strength less than a yield strength of the vessel shell and the mounting shell, a clamping element for coupling the vessel shell to the pressure vessel, and a coupling means for coupling the vessel shell and the mounting shell together through the impact element.
摘要:
A vessel is disclosed, the vessel including a main body having a hollow interior for receiving a fluid therein, wherein at least a portion of the hollow interior includes a filling material disposed therein to minimize a rate of flow of the fluid from the main body, wherein the filling material is at least one of a porous structured material and a granulate material.
摘要:
A vessel is disclosed, the vessel including a main body having a hollow interior for receiving a fluid therein, wherein at least a portion of the hollow interior includes a filling material disposed therein to minimize a rate of flow of the fluid from the main body, wherein the filling material is at least one of a porous structured material and a granulate material.
摘要:
A storage system for a vehicle is disclosed. The storage system includes a pressure vessel, a plurality of mounting systems disposed on each end of the pressure vessel, each mounting system having a vessel shell having an end coupled to the end of the pressure vessel, a mounting shell having a first end coupled to the vehicle and a second end coupled to another end of the vessel shell, and an impact element formed in one of the vessel shell and the mounting shell having a yield strength less than a yield strength of the vessel shell and the mounting shell, a clamping element for coupling the vessel shell to the pressure vessel, and a coupling means for coupling the vessel shell and the mounting shell together through the impact element.