摘要:
A network comprising a plurality of successively interconnected node stages where each node has an associated data connection state and includes a control element, significantly implemented as part of the node itself, for controlling the data connection state of at least one node of the following stage. The network is well suited for optical implementation and is controlled by shifting bits into the network for storage by the control elements rather than relying on spatial light modulators.
摘要:
A network arrangement and control method where, before any transmission of data occurs for a particular communication, a network controller determines an unused path to provide a connection, advantageously all the way through the network from a given inlet to a given outlet. Once the identity of the unused path is known, the controller determines control information for use in activating that path and transmits that control information into the network, significantly via the network inlets. The network responds by activating the determined path and communication is enabled via the activated path, but only for the single connection and no buffering of information is required within the network. The network is particularly well suited for optical implementation and control is effected without the use of spatial light modulators but rather by means of control elements embedded within the network itself.
摘要:
A multi-stage network which achieves the same overall connectivity as known networks but where individual switching nodes have no input selectivity and no output selectivity. Each node is enabled or disabled to control communication therethrough in response to a single control signal. The functionality of a switching network is achieved by controlling which nodes are enabled rather than specifying connections of particular node inputs and outputs to be effected by the nodes. In a photonic network embodiment, each network node is implemented using a single symmetric self electro-optic effect device (S-SEED).
摘要:
A multi-stage network which achieves the same overall connectivity as known networks but where individual switching nodes have no input selectivity and no output selectivity. Each node is enabled or disabled to control communication therethrough in response to a single control signal. The functionality of a switching network is achieved by controlling which nodes are enabled rather than specifying connections of particular node inputs and outputs to be effected by the nodes. In a photonic network embodiment, each network node is implemented using a single symmetric self electro-optic effect device (S-SEED).
摘要:
A reduced-blocking system where a perfect shuffle equivalent network having a plurality of node stages successively interconnected by link stages, is advantageously combined with expansion before the node stages and/or concentration after the node stages in a manner allowing the design of a system with arbitrarily low or zero blocking probability. An illustrative photonic system implementation uses free-space optical apparatus to effect a low loss, crossover interconnection of two-dimensional arrays of switching nodes comprising, for example, symmetric self electro-optic effect devices (S-SEEDs). Several low loss beam conbination techniques are used to direct multiple arrays of beams to an S-SEED array, and to redirect a reflected output beam array to a subsequent node stage.
摘要:
A crossover network implemented using two-dimensional arrays of nodes. The network is a perfect shuffle equivalent network because it is topologically equivalent to a crossover network of one-dimensional arrays of nodes. The two-dimensional arrays are arranged in rows and columns and there are a plurality of link stages interconnecting successive arrays. The network is implemented efficiently in free space optics because the network topology requires optical crossovers in some link stages that interconnect only nodes in the same column of successive arrays and optical crossovers in the other link stages that interconnect only nodes in the same row of successive arrays.
摘要:
An optical switch (100) is disclosed for switching spatially-separated complementary optical signals from a row of a two-dimensional input storage array (132) to a selected row of a two-dimensional ouptut storage array (133). The switch includes an input system (101) for converting temporally-separated information represented by a serial bit stream of complementary optical signals into a spatially-separated format for storage in the input array. An output system 105 is also included for converting the switched, spatially-separated information in the output array into a temporally-separated format for serial transmission on plurality of optical output fiber pairs 160(1)-160(N). The input and output systems enable the switch to perform both time- and space-division switching with only a single stage of switching. A distributor system (103), also included in the switch, spatially distributes the optical signal pairs from a row of the input array over the entire output array for selective storage of the information represented by the signals in one or more rows of the output array.
摘要:
Optical apparatus for performing wavelength-dependent beam combination. The apparatus relies on a polarization beam splitter in combination with other optical elements to develop combined beams with the same polarization type and that are therefore suitable for polarization-dependent combination with other beam arrays. A dichroic mirror, which is used as the wavelength-dependent element of the apparatus, is oriented such that the incident beams are substantially perpendicular to the mirror. With this orientation, the dichroic mirror achieves near-ideal performance even with beam arrays having a substantial angular field. The apparatus also uses two plates which, although designed for operation as quarter-wave plates at one of the two wavelights being combined, are oriented with their respective fast axes substantially perpendicular to each other such that polarization conversions, effected by the plates on beams having the other of the two wavelengths, substantially cancel each other.