Abstract:
On a dozer, a semi-automatic system automatically translates a joystick to control blade elevation and provides an indicator display to guide manual control of blade slope angle. A mechanical linkage operably couples the joystick to an electrical motor. A computational system receives measurements from measurement units mounted on the dozer; calculates estimated values of elevation and slope angle; compares the estimated values to reference values; and calculates error and control signals. Drivers generate a motor drive signal and a display drive signal. In response to the motor drive signal, the electrical motor translates the joystick to control elevation. In response to the display drive signal, the indicator display generates a graphical representation of the status of slope angle. When the operator needs to take manual control, a proximity sensor detects the presence of at least a portion of the operator's hand, wrist, or forearm and disengages automatic control of elevation.
Abstract:
A wedge three-axis inertial sensor damper suspension apparatus prevents shock and vibration impacts on a construction machine from being transferred to inertial sensors used by an automatic control system of the construction machine. The inertial sensor suspension apparatus includes a pocket, a lid, a core disposed in the pocket and covered by the lid, one or more inertial sensors attached to the core, a plurality of elastomer insertions attached to the core and forming an upper wedge between the core and the lid and a lower wedge between the core and the pocket, and a coupler that provides controlled connection of the pocket and the lid to compress the plurality of elastomer insertions using a force corresponding to a target resonance frequency for the inertial sensor suspension apparatus.
Abstract:
Dozers outfitted with manual or electric valves can be retrofitted with a control system for automatically controlling the elevation and orientation of the blade. No modification of the existing hydraulic drive system or existing hydraulic control system is needed. An arm is operably coupled to the existing joystick, whose translation controls the elevation and orientation of the blade. The arm is driven by an electrical motor assembly. Measurement units mounted on the dozer body or blade provide measurements corresponding to the elevation or orientation of the blade. A computational system receives the measurements, compares them to target reference values, and generates control signals. Drivers convert the control signals to electrical drive signals. In response to the electrical drive signals, the electrical motor assembly translates the arm, which, in turn, translates the joystick. If necessary, an operator can override the automatic control system by manually operating the joystick.
Abstract:
A system and method are provided for determining the position and orientation of an implement on a work machine in a non-contact manner using machine vision. A 3D camera, which is mounted on the vehicle with a field of view that includes components on the implement (e.g., markers in some examples), determines a three-dimensional position in a local coordinate system of each of the components. A global positioning system in cooperation with an inertial measurement unit determines a three-dimensional position and orientation of the 3D camera in a global coordinate system. A computing system calculates a three-dimensional position in the global coordinate system for the components using the local three-dimensional positions of the components and the global three-dimensional position and orientation of the 3D camera. The position and orientation of the implement can then be calculated based on the calculated global three-dimensional positions of the components.
Abstract:
Dozers outfitted with manual or electric valves can be retrofitted with a control system for automatically controlling the elevation and orientation of the blade. No modification of the existing hydraulic drive system or existing hydraulic control system is needed. An arm is operably coupled to the existing joystick, whose translation controls the elevation and orientation of the blade. The arm is driven by an electrical motor assembly. Measurement units mounted on the dozer body or blade provide measurements corresponding to the elevation or orientation of the blade. A computational system receives the measurements, compares them to target reference values, and generates control signals. Drivers convert the control signals to electrical drive signals. In response to the electrical drive signals, the electrical motor assembly translates the arm, which, in turn, translates the joystick. If necessary, an operator can override the automatic control system by manually operating the joystick.
Abstract:
Disclosed is a method for automatically controlling a blade of a motor grader. At least one global navigation satellite system (GNSS) antenna and at least one inertial measurement unit (IMU) are mounted on the motor grader. No GNSS antenna is mounted on the blade; and no pole is used for mounting. With each GNSS antenna, GNSS navigation signals are received, and a position of each GNSS antenna is computed. With each IMU, three orthogonal accelerations and three orthogonal angular rotation rates are measured. With at least one processor, a blade position and a blade orientation are computed, based at least in part on the GNSS and IMU measurements. The blade elevation and the blade slope angle (and, in some embodiments, the blade side shift) are automatically controlled, based at least in part on the computed blade position, the computed blade orientation, and a digital job site model.
Abstract:
On a dozer, a semi-automatic system automatically translates a joystick to control blade elevation and provides an indicator display to guide manual control of blade slope angle. A mechanical linkage operably couples the joystick to an electrical motor. A computational system receives measurements from measurement units mounted on the dozer; calculates estimated values of elevation and slope angle; compares the estimated values to reference values; and calculates error and control signals. Drivers generate a motor drive signal and a display drive signal. In response to the motor drive signal, the electrical motor translates the joystick to control elevation. In response to the display drive signal, the indicator display generates a graphical representation of the status of slope angle. When the operator needs to take manual control, a proximity sensor detects the presence of at least a portion of the operator's hand, wrist, or forearm and disengages automatic control of elevation.