摘要:
A residual chromatic dispersion target value at a terminal node is set for each wavelength path, and also, candidates of a dispersion compensation amount settable in each chromatic dispersion compensation module on an optical network are set, and further, computation processing is executed for selecting the dispersion compensation amount in each chromatic dispersion compensation module from the candidates so that the sum of errors between the residual chromatic dispersion amounts and the set residual chromatic dispersion target values at the terminal nodes for all of wavelength paths becomes minimum. As a result, for each wavelength path on the optical network, the dispersion compensation amount in each chromatic dispersion compensation module can be designed in optimum so as to satisfy the desired optical signal quality at the terminal node, while considering the residual chromatic dispersion during the transmission.
摘要:
In a network design apparatus, a full channel evaluator determines whether all wavelength channels for main signals can deliver the main signals of an existing optical network. When it is found that one or more wavelength channels cannot deliver main signals, a chromatic dispersion evaluator determines whether there are a specified number of wavelength channels that satisfy a specified chromatic dispersion condition. An optical signal-to-noise ratio (SNR) evaluator extracts a specified number of wavelength channels out of those satisfying the chromatic dispersion condition in descending order of optical SNRs thereof, and determines whether the extracted wavelength channels satisfy a specified optical SNR condition.
摘要:
A method for determining a value of chromatic dispersion compensation in an optical network including a plurality of nodes connected by at least one transmission line, the plurality of nodes including a plurality of dispersion compensators, the optical network including a plurality of wavelength paths between the optional nodes, the method includes determining a compensation value of the dispersion compensators in the optical network by the computer, the compensation value selecting that an error between the object value of the residual chromatic dispersion in accordance with of the first end node of the first path and the permissible value of the residual chromatic dispersion of the first end node of the first path is least, and the value of the residual chromatic dispersion of the first end is in the permissible value of the residual chromatic dispersion of the second end node of the second path.
摘要:
A network design apparatus includes an input unit configured to receive network information that indicates nodes connected by optical transmission paths and path information that indicates paths between the nodes; an design unit configured to perform, based on the network information and the path information, wavelength dispersion compensation design using a constraint condition that a path whose span count is larger than a span count of another path that does not satisfy a transmission condition does not satisfy the transmission condition; and an output unit configured to output a result obtained by the design unit.
摘要:
A network design device includes a bypass number setting unit setting the number of bypass node; a loss calculating unit calculating a reference loss; a graph generating unit generating a graph having a variation value obtained based on a difference between a transmission loss of a link coupling nodes to each other and the reference loss; a path detecting unit detecting a minimum-variation-path in which sum of each variation value from a start point to an end point of the graph is minimum; and a comparing unit comparing a calculation OSNR and a reference OSNR, the calculation OSNR being obtained by a calculation from a start point to an end point assuming that an optical amplifier is located on a node other than a bypass node on the minimum-variation-path, wherein the bypass number setting unit changes the number of bypass node based on a result of the comparing unit.
摘要:
A signal demultiplexer includes a conversion unit that converts a format of a high speed signal transfer frame output from a terminating unit into a format of a converted frame; a parallelization unit that parallelizes the converted frame and outputs a predetermined number of data columns; and a separating unit that separates plural low speed signal transfer frames from the predetermined number of the data columns. The conversion unit converts the format of the high speed signal transfer frame into the format of the converted frame by delaying a signal storing area using first and second overhead areas, to include an “i” th tributary slot among the predetermined number of the tributary slots assigned to the signal storing area into an arbitrary “i” th data column among the predetermined number of the data columns, and to align front positions of the predetermined number of the data columns.
摘要:
A transmission apparatus includes a processor configured to recognize a number of working failures and a number of protection failures on a network for transmission of wavelength-multiplexed signal light, the number of working failures being the number of failures in signal light in wavelengths at a working entity and the number of protection failures being the number of failures in signal light in wavelengths at a protection entity, configured to perform path switching for each group of signal light in wavelengths that are different from each other and configured to select, when multiple failures occur, restoration processing, on a basis of the number of working failures and the number of protection failures.
摘要:
An optical transponder includes a mapping unit mapping, out of multiple types of signals including a first client signal and a second client signal that transmission rates are different from each other, the first client signal having a lower transmission rate to a Generic Framing Procedure (GFP) frame defined in ITU-T Recommendations; a coding unit applying 64B/66B coding to the first client signal mapped to the GFP frame; and a multiplexing unit multiplexing the first client signal to which the 64B/66B coding has been applied and the second client signal in a frame conforming to an Optical Transport Network (OTN) defined in ITU-T Recommendations; in which the first client signal and the second client signal are accommodated in an identical frame in a mixed manner and transmitted as an optical signal having one wavelength.