摘要:
A simple, low cost drive circuit secures a sufficient number of subfields in a high resolution panel. The plasma display panel drive circuit groups plural sustain electrodes into first and second sustain electrode groups, and applies sustain pulses in the sustain period. The first and second sustain pulse generating circuits generate and apply sustain pulses to first and second electrode paths. First and second specific voltage application circuits apply a first specific voltage to the first and second electrode paths. The voltage selection circuit selects one of a plurality of voltages including at least a second specific voltage and a third specific voltage, and generates a selected voltage. The first and second sustain pulse generating circuits generate the sustain pulses based on the second specific voltage when the selected voltage is the second specific voltage, and when the selected voltage is the third specific voltage, apply the third specific voltage to the first and second electrode paths.
摘要:
A method of driving a plasma display panel of the present invention, is a driving method of a display panel including plural display electrode pairs (24) each including a scan electrode (22) and a sustain electrode (23) extending along each other, plural data electrodes (32) crossing the plural display electrode pairs (24) and discharge cells respectively formed at positions where the display electrode pairs (24) and the data electrodes (32) cross each other. The method comprises applying a last sustain pulse to the scan electrode (22) in a sustain period when a sustain voltage pulse is applied alternately to the scan electrode (22) and to the sustain electrode (23); then applying to the scan electrode (22) a first ramp voltage having a first ramp waveform which is opposite in polarity to the last sustain voltage pulse; and applying to the sustain electrode (23) a second ramp voltage having a second ramp waveform which is opposite in polarity to the first ramp voltage such that before one of the first and second ramp waveforms reaches a predetermined voltage and finishes rising, the other of the first and second ramp waveforms starts rising.
摘要:
A plurality of display electrode pairs are divided into two display electrode pair groups I and II. One field is divided into M (M is an integer of 2 or more) sub-fields SFL (L=1 to M) each including a wall voltage adjusting period, an address period, and a sustain period. Based on a sustain period T1 of a K-th sub-field SFK and a wall voltage adjusting period T2 positioned between the sustain period T1 and the address period of a (K+1)-th sub-field, if T1>T2, a first driving method in which the sustain period T1 and the wall voltage adjusting period T2 are set for each of the display electrode pair groups I and II is used in the sub-field SFK, and if T1
摘要:
The present invention provides a plasma display panel driving method and a plasma display device, each of which is capable of securing image quality and realizing an improvement of a drive margin and a reduction in power consumption even in the case of an ultra high definition panel. The present invention divides a plurality of display electrode pairs into a plurality of display electrode pair groups. For each of the display electrode pair groups, the present invention divides one field period into a plurality of sub-fields, each including an address period and a sustain period, such that the address periods with respect to the display electrode pair groups do not overlap one another, the address period being a period in which an address process of causing address discharge in the discharge cell which should emit light is carried out, the sustain period being a period in which first and second sustain pulses are applied to a scan electrode and a sustain electrode. The present invention provides the sub-field in which the cycle of each of the first and second sustain pulses is longer than 5.5 μs within such a range that a time of the sustain period does not exceed Tw×(N−1)/N, where N denotes the number of display electrode pair groups, and Tw denotes a time necessary for carrying out the address process with respect to the discharge cells corresponding to all the display electrode pairs.
摘要:
In a driving method of a plasma display panel of the present invention, plural display electrode pairs are divided into plural display electrode pair groups and one field is divided into plural sub-fields. The length of the sustain period is compared to the length of the erase period. If the sustain period is longer than the erase period, sustain discharge and erase discharge are performed for each of the display electrode pair groups, while if the sustain period is shorter than the erase period, sustain discharge and erase discharge of one display electrode pair group are synchronized with those of another display electrode pair group. For a sub-field with a largest luminance weight or a sub-field with a highest lighting ratio, sustain discharge and erase discharge of one display electrode pair group are synchronized with those of another display electrode pair group without fail.
摘要:
An object is to provide a method for driving a PDP, which may be a super high-definition panel, and a PDP device capable of assuring the sufficient number of subfields to maintain the image quality and displaying images with the sufficient luminance.To achieve the above object, one field period is divided into a plurality of subfields each having an address period and a sustain period. A plurality of display electrode pairs are divided in to a plurality N of display electrode pair groups. A start time point of a subfield is set for each display electrode pair group. When a time required for performing one address operation on all the discharge cells of the panel is represented by Tw, the time length of a sustain period of each of the subfields in each of the display electrode pair groups is defined not to exceed Tw×(N−1)/N.
摘要:
A plasma display device has a plasma display panel and a panel driving circuit for driving the panel. The panel driving circuit drives the panel in a manner that a period for causing an address discharge in all discharge cells is disposed in the address period, or before the address period of a subfield, and the subfield (first SF) is interposed at predetermined time intervals.
摘要:
The present invention aims to improve a low gradation expression ability by reducing the brightness of the 1st gradation level to about 1.05 cd/m2 of the intermediate brightness between the 0th gradation level and the 2nd gradation level at the time of driving a PDP. During a sustain erase period (P13) of a subfield (SF1) with the smallest brightness weight among a plurality of subfields (SF), a positive voltage (Vbk) that is smaller than a voltage (Vsus) applied during a sustain period (P23) of other SFs is applied to scan electrodes. Also, during the sustain erase period (P13) of SF1, a positive voltage (Vda) is applied to address electrodes or a positive voltage (Vda) is applied to the address electrodes during at least one period of a voltage rising period (T11) of an all-cell reset period (P11).
摘要翻译:本发明旨在通过在驱动PDP时将第一灰度级的亮度降低到第零灰度级和第二灰度级之间的中间亮度的约1.05cd / m 2来提高低灰度表现能力。 在多个子场(SF)中具有最小亮度权重的子场(SF1)的维持擦除期间(P13)中,比在维持期间施加的电压(Vsus)小的正电压(Vbk)(P23 )的其他SF被应用于扫描电极。 此外,在SF1的维持擦除期间(P13)中,在寻址电极施加正电压(Vda),在电压上升期间(T11)的至少一个周期内,向寻址电极施加正电压(Vda) 的全复位周期(P11)。
摘要:
The aim is to improve the display capability of a PDP at lower gray scale levels by driving the PDP in a manner to adjust the luminance of Gray Scale 1 to an appropriate level. According to the drive method, one TV field is divided into a plurality of subfields SF 1, SF 2 . . . each having a reset period, an address period, and a sustain period. During the address period of SF 1, the sustain electrodes are held at a voltage (potential) Ve1. During the address period in SF 2 and the subsequent subfields, the sustain electrodes are held at a voltage (Ve+Ve2) The voltage Ve1 is higher than the ground voltage and lower than the voltage (Ve+Ve2).
摘要:
The purpose of the present invention is to provide a method for accurately dropping molten metal that flows from a ladle into a pouring gate in a mold. The present invention includes a method for controlling the respective input voltages transmitted to a servomotor that tilts the ladle such that the molten metal that flows from the ladle drops accurately into the pouring gate in the mold, a servomotor that moves the ladle back and forth, and a servomotor that moves the ladle up and down, by using a computer. In the method, a mathematical model of the area on which the molten metal that flows from the ladle will drop is produced, and then the inverse problem of the produced mathematical model is solved. In view of the effect of a contracted flow, the position on which molten metal drops is estimated by the estimating device for estimating the pouring rate and the estimating device for estimating the position on which molten metal will drop. Then the estimated position is calculated by a computer. Thereby the respective input voltages transmitted to the servomotor that tilts the ladle, the servomotor that moves the ladle back and forth, and the servomotor that moves the ladle up and down, are obtained. Then the three respective servomotors are controlled based on the obtained input voltages.