摘要:
An optical disk apparatus uses a laser driver which can measure the frequency of the high-frequency superimposed current of the semiconductor laser simply and accurately. The apparatus includes a semiconductor laser which emits a laser beam onto the optical disk, a laser driver which drives the semiconductor laser with a current, with the high-frequency current being superimposed thereon, and measures the frequency of the high-frequency current, and a main controller which controls the frequency of the high-frequency current produced by the laser driver by using the frequency measured by the laser driver.
摘要:
According to the present invention, in an optical disk apparatus constructed to supply signals for controlling a semiconductor laser drive circuit provided to an optical pickup from a signal processing circuit through a flexible cable, the semiconductor laser drive circuit is so constructed as to generate a drive current signal for the semiconductor laser on the basis of a binary signal and a clock signal which are supplied from the signal processing circuit through the flexible cable and the signal processing circuit is so constructed as to stop supplying the block signal to the semiconductor laser drive circuit through the flexible cable during reproduction of data, and to start supplying the clock signal to the semiconductor laser drive circuit before recording of data.
摘要:
An information recording/reproducing apparatus includes a semiconductor laser, a laser driver which drives the semiconductor laser, an optical system which focuses light emitted from the semiconductor laser on an information recording medium, a photodetector which detects light reflected from the information recording medium, and outputs a reflection light signal, a modulation circuit which modulates information in accordance with a predetermined rule, and outputs a binary signal representing the modulated information, and a calculation/control circuit which controls the modulation circuit. The laser driver includes a delay circuit, and receives the binary signal, generates a recording current signal corresponding to the binary signal through the delay circuit, and transmits an output of the delay circuit to the calculation/control circuit as a monitor signal. The calculation/control circuit generates a timing signal for sampling and holding the reflection light signal based on the monitor signal.
摘要:
A laser drive (LD) unit 1 according to the present invention is provided with a laser drive waveform controller 6, into which information for setting the laser drive is entered from a controller 2, for generating a laser drive waveform on the basis of that information and supplying an indicated amperage; an LD current setting unit 7 for setting a laser drive current matching the indicated amperage; an LD current output unit 8 for varying the laser drive current on the basis of the laser drive waveform and supplying the current so varied to a laser diode 3; and a current setting corrector 9, into which a monitor signal obtained at the time of monitoring the laser beam emission from the laser diode 3 is monitored, for correcting the laser drive current set by the current setting unit 7 by using that monitor signal to adjust the power of the laser diode 3. The laser drive waveform controller 6, current setting unit 7, current output unit 8 and current setting corrector 9 are formed on the same substrate.
摘要:
A laser drive (LD) unit 1 according to the present invention is provided with a laser drive waveform controller 6, into which information for setting the laser drive is entered from a controller 2, for generating a laser drive waveform on the basis of that information and supplying an indicated amperage; an LD current setting unit 7 for setting a laser drive current matching the indicated amperage; an LD current output unit 8 for varying the laser drive current on the basis of the laser drive waveform and supplying the current so varied to a laser diode 3; and a current setting corrector 9, into which a monitor signal obtained at the time of monitoring the laser beam emission from the laser diode 3 is monitored, for correcting the laser drive current set by the current setting unit 7 by using that monitor signal to adjust the power of the laser diode 3. The laser drive waveform controller 6, current setting unit 7, current output unit 8 and current setting corrector 9 are formed on the same substrate.
摘要:
A laser waveform generation function is provided in a laser driving waveform generator 2 near a laser 3. A recording clock generator 9 is included in the laser driving waveform generator 2 to generate a clock with a frequency higher than that of a synchronizing clock 202. This allows a recording laser current (waveform) to be generated without transmission of a high frequency signal from the modulator 6. Further, because the synchronizing clock 202 is stopped upon a reproduction operation including reproduction operation in an ID unit, undesired effects on a reproduction operation such as ID reproduction can be reduced. Because the response speed of the recording clock generator 9 can be changed, a high precision clock can be generated. Thus, a high-precision recording laser current (waveform) can be generated.
摘要:
An information recording/reproducing apparatus which can record and reproduce information data into and from various kinds of recording mediums has a laser driver which enables recording strategy control for each kind of recording medium. The laser driver receives an NRZ binary signal and a clock signal synchronized with the NRZ binary signal from a modulation circuit, and generates a recording current signal corresponding to the NRZ binary signal. The laser driver includes a PLL circuit disposed in the laser driver which oscillates at a recording frequency, and an unlock detection circuit which detects an oscillating condition of the PLL circuit and outputs a detection signal indicative of the oscillating condition of the PLL. A recording operation of the information recording/reproducing apparatus is controlled based on the detection signal outputted from the unlock detection circuit.
摘要:
An optical disk apparatus uses a laser driver which can measure the frequency of the high-frequency superimposed current of the semiconductor laser simply and accurately. The apparatus includes a semiconductor laser which emits a laser beam onto the optical disk, a laser driver which drives the semiconductor laser with a current, with the high-frequency current being superimposed thereon, and measures the frequency of the high-frequency current, and a main controller which controls the frequency of the high-frequency current produced by the laser driver by using the frequency measured by the laser driver.
摘要:
A laser waveform generation function is provided in a laser driving waveform generator 2 near a laser 3. A recording clock generator 9 is included in the laser driving waveform generator 2 to generate a clock with a frequency higher than that of a synchronizing clock 202. This allows a recording laser current (waveform) to be generated without transmission of a high frequency signal from the modulator 6. Further, because the synchronizing clock 202 is stopped upon a reproduction operation including reproduction operation in an ID unit, undesired effects on a reproduction operation such as ID reproduction can be reduced. Because the response speed of the recording clock generator 9 can be changed, a high precision clock can be generated. Thus, a high-precision recording laser current (waveform) can be generated.
摘要:
A laser waveform generation function is provided in a laser driving waveform generator 2 near a laser 3. A recording clock generator 9 is included in the laser driving waveform generator 2 to generate a clock with a frequency higher than that of a synchronizing clock 202. This allows a recording laser current (waveform) to be generated without transmission of a high frequency signal from the modulator 6. Further, because the synchronizing clock 202 is stopped upon a reproduction operation including reproduction operation in an ID unit, undesired effects on a reproduction operation such as ID reproduction can be reduced. Because the response speed of the recording clock generator 9 can be changed, a high precision clock can be generated. Thus, a high-precision recording laser current (waveform) can be generated.