摘要:
An object of the present invention is to provide an R—Fe—B based sintered magnet having on a surface thereof a chemical conversion film with higher corrosion resistance than a conventional chemical conversion film such as a phosphate film, and a method for producing the same. The corrosion-resistant magnet of the present invention as a means for achieving the object is characterized by comprising a chemical conversion film containing at least Zr, Nd, fluorine, and oxygen as constituent elements and not containing phosphorus directly on a surface of an R—Fe—B based sintered magnet, wherein R is a rare-earth element including at least Nd.
摘要:
An object of the present invention is to provide an R—Fe—B based sintered magnet having on a surface thereof a chemical conversion film with higher corrosion resistance than a conventional chemical conversion film such as a phosphate film, and a method for producing the same. The corrosion-resistant magnet of the present invention as a means for achieving the object is characterized by comprising a chemical conversion film containing at least Zr, Nd, fluorine, and oxygen as constituent elements and not containing phosphorus directly on a surface of an R—Fe—B based sintered magnet, wherein R is a rare-earth element including at least Nd.
摘要:
An object of the present invention is to provide an R—Fe—B based sintered magnet having on a surface thereof a chemical conversion film with higher corrosion resistance than a conventional chemical conversion film such as a phosphate film, and a method for producing the same. The R—Fe—B based sintered magnet having a chemical conversion film on the surface thereof of the present invention as a means for achieving the object is characterized by comprising a chemical conversion film on a surface of an R—Fe—B based sintered magnet wherein R is a rare-earth element including at least Nd, the chemical conversion film having a laminate structure including at least an inner layer that contains R, fluorine, and oxygen as constituent elements and an outer layer that is amorphous and contains Zr, Fe, and oxygen as constituent elements, provided that no phosphorus is contained in the film.
摘要:
An objective of the invention is to provide a method for producing a rare earth metal-based permanent magnet having on the surface thereof a copper plating film by using a novel plating solution for use in a copper electroplating treatment capable of forming a copper plating film having excellent adhesiveness on the surface of a rare earth metal-based permanent magnet. As a means for solving the problem, the method for producing a rare earth metal-based permanent magnet having a copper plating film on the surface thereof according to the invention is characterized in that the production method comprises forming a copper plating film on the surface of the rare earth metal-based permanent magnet by applying a copper electroplating treatment using a plating solution whose pH is adjusted to a range from 9.0 to 11.5 and containing at least: (1) Cu2+ ions, (2) an organic phosphoric acid having two or more phosphorus atoms and/or a salt thereof, (3) gluconic acid and/or a salt thereof, (4) a sulfate and/or a nitrate, and (5) at least one organic carboxylic acid selected from oxalic acid, tartaric acid, citric acid, malonic acid, and malic acid, and/or a salt thereof; provided that a copper salt is excluded from the components (2) to (5).
摘要:
A simple and low cost method for imparting excellent hydrogen resistance to various types of articles such as a rare earth metal-based permanent magnet. A method for imparting hydrogen resistance to an article of the present invention is characterized by forming a metal coating film by pulse plating on the surface of the article.
摘要:
[Problems] To provide a method for producing a rare earth metal-based permanent magnet having on the surface thereof a copper plating film by using a novel plating solution for use in a copper electroplating treatment capable of forming a copper plating film having excellent adhesiveness on the surface of a rare earth metal-based permanent magnet. [Means for Resolution] The method for producing a rare earth metal-based permanent magnet having a copper plating film on the surface thereof according to the invention is characterized in that it comprises forming a copper plating film on the surface of a rare earth metal-based permanent magnet by means of a copper electroplating treatment by using a plating solution having its pH adjusted to a range from 9.0 to 11.5 and containing at least the following three components: (1) Cu2+ ions, (2) a chelating agent having a chelate stability constant of 10.0 or higher for Cu2+ ions, and (3) a chelating agent having a chelate stability constant of 16.0 or higher for Fe3+ ions (where, the aforementioned chelate stability constants are confined to conditions of pH 9.0 to 11.5).
摘要:
[Problems] To provide a method for producing a rare earth metal-based permanent magnet having on the surface thereof a copper plating film by using a novel plating solution for use in a copper electroplating treatment capable of forming a copper plating film having excellent adhesiveness on the surface of a rare earth metal-based permanent magnet.[Means for Resolution] The method for producing a rare earth metal-based permanent magnet having a copper plating film on the surface thereof according to the invention is characterized in that it comprises forming a copper plating film on the surface of a rare earth metal-based permanent magnet by means of a copper electroplating treatment by using a plating solution having its pH adjusted to a range from 9.0 to 11.5 and containing at least the following three components: (1) Cu2+ ions, (2) a chelating agent having a chelate stability constant of 10.0 or higher for Cu2+ ions, and (3) a chelating agent having a chelate stability constant of 16.0 or higher for Fe3+ ions (where, the aforementioned chelate stability constants are confined to conditions of pH 9.0 to 11.5).