Abstract:
An object of the present invention is to provide an R—Fe—B based sintered magnet having on a surface thereof a chemical conversion film with higher corrosion resistance than a conventional chemical conversion film such as a phosphate film, and a method for producing the same. The corrosion-resistant magnet of the present invention as a means for achieving the object is characterized by comprising a chemical conversion film containing at least Zr, Nd, fluorine, and oxygen as constituent elements and not containing phosphorus directly on a surface of an R—Fe—B based sintered magnet, wherein R is a rare-earth element including at least Nd.
Abstract:
An object of the present invention is to provide a production method for an R—Fe—B based sintered magnet having a plating film excellent in adhesiveness on the surface thereof, by conducting a series of processes of acid cleaning and smut removal as pretreatments of a plating treatment of an R—Fe—B based sintered magnet, and the subsequent plating treatment, effectively without requiring troubles. The production method for an R—Fe—B based sintered magnet having a plating film on the surface thereof of the present invention, as a solution method therefor, is characterized in that a series of processes of acid cleaning and smut removal of a magnet as pretreatments of a plating treatment, and the subsequent plating treatment is conducted consistently with a state, in which the magnet is placed in a barrel made of synthetic resin, and that the smut removal is conducted by ultrasonic cleaning of the magnet with rotating the barrel in water in which the dissolved oxygen amount is set to 0.1 ppm to 6 ppm by degassing.
Abstract:
In a method for producing an R—Fe—B based rare-earth sintered magnet according to the present invention, first, provided is an R—Fe—B based rare-earth sintered magnet body including, as a main phase, crystal grains of an R2Fe14B type compound that includes a light rare-earth element RL, which is at least one of Nd and Pr, as a major rare-earth element R. Thereafter, the sintered magnet body is heated while a heavy rare-earth element RH, which is at least one element selected from the group consisting of Dy, Ho and Tb, is supplied to the surface of the sintered magnet body, thereby diffusing the heavy rare-earth element RH into the rare-earth sintered magnet body.
Abstract:
An object of the present invention is to provide an R—Fe—B based sintered magnet that exhibits excellent corrosion resistance and maintains excellent adhesion strength to an adherend even under severe conditions, and a method for producing the same. A corrosion-resistant magnet of the present invention as a means for achieving the object is characterized by comprising a chemical conversion film containing at least Zr, V, Al, fluorine, and oxygen as constituent elements and not containing phosphorus over a surface of an R—Fe—B based sintered magnet with a film made of Al or an alloy thereof therebetween.
Abstract:
An object of the present invention is to provide a production method for an R—Fe—B based sintered magnet having a plating film excellent in adhesiveness on the surface thereof, by conducting a series of processes of acid cleaning and smut removal as pretreatments of an R—Fe—B based sintered magnet, and the subsequent plating treatment effectively without causing trouble. The production method of the present invention includes a series of processes of acid cleaning and smut removal of a magnet as pretreatments, and the subsequent plating treatment is conducted consistently with a state, in which the magnet is placed in a barrel made of synthetic resin. The smut removal is conducted by ultrasonic cleaning of the magnet with rotating the barrel in water in which the dissolved oxygen amount is set to 0.1 ppm to 6 ppm by degassing.
Abstract:
In a method for producing an R—Fe—B based rare-earth sintered magnet according to the present invention, first, provided is an R—Fe—B based rare-earth sintered magnet body including, as a main phase, crystal grains of an R2Fe14B type compound that includes a light rare-earth element RL, which is at least one of Nd and Pr, as a major rare-earth element R. Thereafter, the sintered magnet body is heated while a heavy rare-earth element RH, which is at least one element selected from the group consisting of Dy, Ho and Tb, is supplied to the surface of the sintered magnet body, thereby diffusing the heavy rare-earth element RH into the rare-earth sintered magnet body.
Abstract:
An R—Fe—B permanent magnet body is cleaned by ion sputtering, after which a Ti coating film is formed on the surface of the magnet body by a thin film forming method such as ion plating, after which an Al coating film is formed as an intermediate layer, after which an AlN coating film, TiN coating film, or Ti1−xAlxN coating film is formed by a thin film forming method such as ion reactive plating in N2 gas. By having the Al coating film layer present as an intermediate layer, it acts as a sacrificial coating film for the permanent magnet body and the foundation layer Ti coating film, whereupon adhesion with the Ti coating film is sharply improved, and the time until corrosion develops is lengthened, even in such severe corrosion resistance tests as salt water spray tests. Thus R—Fe—B permanent magnets are obtained which exhibit outstanding salt water spray resistance and wear resistance and which have stable magnetic characteristics.
Abstract:
In an R—Fe—B based rare-earth sintered magnet according to the present invention, at a depth of 20 μm under the surface of its magnet body, crystal grains of an R2Fe14B type compound have an (RL1-xRHx)2Fe14B (where 0.2≦x≦0.75) layer with a thickness of 1 nm to 2 μm in their outer periphery. In this case, the light rare-earth element RL is at least one of Nd and Pr, and the heavy rare-earth element RH is at least one element selected from the group consisting of Dy, Ho and Tb.
Abstract:
An object of the present invention is to provide a novel method for forming an electrolytic copper plating film having excellent adhesion on the surface of a rare earth metal-based permanent magnet. The method of the present invention as a means for achieving the object is characterized in that after a magnet is immersed in a plating solution, a cathode current density of 0.05 A/dm2 to 4.0 A/dm2 for performing an electrolytic copper plating treatment is applied thereto over 10 seconds to 180 seconds to start the treatment.
Abstract:
In an R—Fe—B based rare-earth sintered magnet according to the present invention, at a depth of 20 μm under the surface of its magnet body, crystal grains of an R2Fe14B type compound have an (RL1−xRHx)2Fe14B (where 0.2≦x≦0.75) layer with a thickness of 1 nm to 2 μm in their outer periphery. In this case, the light rare-earth element RL is at least one of Nd and Pr, and the heavy rare-earth element RH is at least one element selected from the group consisting of Dy, Ho and Tb.