摘要:
Embodiments of the present invention provide recording area separated magnetic recording media (DTMs, BPMs) allowing magnetic heads to fly lower. According to one embodiment, the recording area separated magnetic recording media are configured so that magnetic recording layers have parts with the relatively higher element ratio of a ferromagnetic material, and parts with the lower element ratio of the ferromagnetic material, occurring periodically in the in-plane direction, and the average height from the substrate surface of the parts with the relatively higher element ratio of a ferromagnetic material is higher than the average height from the substrate surface of the parts with the lower element ratio of the ferromagnetic material. In producing recording area separated magnetic recording media with the element ratio of a ferromagnetic material relatively lowered by ion implantation, preliminarily etching the part to be ion implanted makes the height after ion implantation relatively lower than the non-implanted part.
摘要:
Embodiments of the present invention provide recording area separated magnetic recording media (DTMs, BPMs) allowing magnetic heads to fly lower. According to one embodiment, the recording area separated magnetic recording media are configured so that magnetic recording layers have parts with the relatively higher element ratio of a ferromagnetic material, and parts with the lower element ratio of the ferromagnetic material, occurring periodically in the in-plane direction, and the average height from the substrate surface of the parts with the relatively higher element ratio of a ferromagnetic material is higher than the average height from the substrate surface of the parts with the lower element ratio of the ferromagnetic material. In producing recording area separated magnetic recording media with the element ratio of a ferromagnetic material relatively lowered by ion implantation, preliminarily etching the part to be ion implanted makes the height after ion implantation relatively lower than the non-implanted part.
摘要:
Embodiments of the present invention produce discrete track media and bit patterned media having both excellent read/write performance and reliability. According to one embodiment, the medium comprises a magnetic layers formed by at least two ferromagnetic alloy layers with different compositions on a substrate. The ferromagnetic alloy layer located closest to the medium surface has more concentrated parts and less concentrated parts of nonmagnetic element in the in-plane direction. The more concentrated parts of the nonmagnetic element contain more nonmagnetic elements than the other parts except for an intermediate layer in the magnetic recording layer. The more concentrated parts and the less concentrated parts of the nonmagnetic element in the ferromagnetic alloy layer located closest to the medium surface are formed substantially concentric. The more concentrated parts of the nonmagnetic element is formed by being doped with ions of nonmagnetic element.
摘要:
Embodiments of the present invention help to produce discrete track media and bit patterned media having both excellent recording and reproducing performance and reliability. According to one embodiment, a manufacturing method forms a nonmagnetic layer mainly composed of the same element as a nonmagnetic element contained in magnetic recording layers and on the magnetic recording layers and a mask layer having apertures for forming more concentrated parts of the nonmagnetic element in the magnetic recording layers on the nonmagnetic layer. The method implants ions of the nonmagnetic element through the nonmagnetic layer masked by the mask layer to form the more concentrated parts of the nonmagnetic element in the magnetic recording layer.
摘要:
Embodiments of the present invention help to produce discrete track media and bit patterned media having both excellent recording and reproducing performance and reliability. According to one embodiment, a manufacturing method forms a nonmagnetic layer mainly composed of the same element as a nonmagnetic element contained in magnetic recording layers and on the magnetic recording layers and a mask layer having apertures for forming more concentrated parts of the nonmagnetic element in the magnetic recording layers on the nonmagnetic layer. The method implants ions of the nonmagnetic element through the nonmagnetic layer masked by the mask layer to form the more concentrated parts of the nonmagnetic element in the magnetic recording layer.
摘要:
Embodiments of the present invention produce discrete track media and bit patterned media having both excellent read/write performance and reliability. According to one embodiment, the medium comprises a magnetic layers formed by at least two ferromagnetic alloy layers with different compositions on a substrate. The ferromagnetic alloy layer located closest to the medium surface has more concentrated parts and less concentrated parts of nonmagnetic element in the in-plane direction. The more concentrated parts of the nonmagnetic element contain more nonmagnetic elements than the other parts except for an intermediate layer in the magnetic recording layer. The more concentrated parts and the less concentrated parts of the nonmagnetic element in the ferromagnetic alloy layer located closest to the medium surface are formed substantially concentric. The more concentrated parts of the nonmagnetic element is formed by being doped with ions of nonmagnetic element.
摘要:
According to one embodiment, a magnetic recording medium includes a magnetic recording layer formed above a substrate, the magnetic recording layer being comprised of an alloy having a crystal structure, recording tracks formed on the magnetic recording layer in nearly concentric circular shapes, wherein the recording tracks are comprised of a first alloy composition having a crystal structure, and track separation regions formed between the recording tracks on the magnetic recording layer, wherein the track separation regions are comprised of a second alloy composition having a crystal structure, the second alloy composition comprising the first alloy composition and a non-magnetic element, wherein a lattice constant of the second alloy composition is greater than a lattice constant of the first alloy composition. In other embodiments, methods of manufacturing magnetic recording media and systems using magnetic recording media are described.
摘要:
An object of the present invention is to provide a magnetic recording medium which has a sufficient impact resistance to withstand its accidental collision with a magnetic head and is neither worn away nor fractured in the CSS area by contact or friction between the magnetic recording medium and the magnetic head even if the thickness of a protective filmy layer is reduced in the data area. In order to achieve this object, a magnetic film and a protective film are formed on a substrate, and for example, the other portion of said protective film than a portion where said protective film comes into contact with a magnetic head is made of not only carbon and nitrogen but also hydrogen for increasing the hardness of said protective film.
摘要:
An object of the present invention is to provide a magnetic recording medium which has a sufficient impact resistance to withstand its accidental collision with a magnetic head and is neither worn away nor fractured in the CSS area by contact or friction between the magnetic recording medium and the magnetic head even if the thickness of a protective filmy layer is reduced in the data area. In order to achieve this object, a magnetic film and a protective film are formed on a substrate, and for example, the other portion of said protective film than a portion where said protective film comes into contact with a magnetic head is made of not only carbon and nitrogen but also hydrogen for increasing the hardness of said protective film.
摘要:
A medium conveying device includes an alignment member, a skew conveying member, and a removal member. The alignment member faces one end of a medium and aligns the medium while contacting with the medium when the medium is conveyed in a first direction. The skew conveying member conveys the medium in a second direction crossing to the first direction so that the one end comes in contact with the alignment member and that includes a drive member and a driven member opposed to the drive member and driven by the drive member. The removal member has a tip end coming in contact with a face of the drive member to remove a deposit on the face. The removal member is placed along a rotation direction of the drive member so that the tip end faces downstream of the rotational direction.