Abstract:
Embodiments of the present invention provide a manufacturing method that can form a track guide separation area of a magnetic disk substrate constituting a patterned medium represented by a discrete track medium or bit patterned medium suitable for high recording density, uniformly on the whole surface of the magnetic disk substrate, and accurately according to the mask. According to one embodiment, a soft magnetic film, an under coating film, and a magnetic film are formed on a substrate. A mask having an arbitrary pattern shape provided for forming the track guide separation area in the magnetic film is formed on the magnetic film, and the track guide separation area is formed by irradiating ions and electrons onto the surface of the magnetic film and applying an intermittent voltage to the substrate, thereby non-magnetizing the area irradiated.
Abstract:
To promote reduction in thickness of an air bearing surface protective film of a magnetic head, a magnetic head having an air bearing surface protective film consisting only of a thin carbon film while excluding formation of a dead layer by ion incidence as less as possible to the read/write device, and a manufacturing method therefore, are provided. In an embodiment, an air bearing surface protective film of a magnetic head comprises a thin carbon film, in which the mass density a lowermost layer of the air bearing surface protective film on the side of a magnetic device is made lower compared with a thin carbon film constituting other adjacent layers. Further, the manufacturing method comprises deposition under the control of time for the incident angle of ion flow to a substrate to be processed and deposition under the control of time for the ion flow energy to a substrate to be processed
Abstract:
The invention relates to an electrochromic (EC) device for controlling transmittance of light, such as a window pane or a filter for a display. The EC device has a double-decker structure produced by superposition of two identical EC cells each having two oppositely arranged EC electrodes one of which is formed of a first EC material that takes on color in oxidized state, such as Prussian blue, and the other of a second EC material that takes on color in reduced state such as WO.sub.3. The EC device has a transparent inner substrate with an EC electrode layer using one of the first and second EC materials on each side thereof and two transparent outer substrates each with an EC electrode layer using the other of the first and second EC materials. There is a peripheral seal between the inner substrate and each outer substrate, and the space defined between the inner substrate and each outer substrate is filled up with an electrolyte liquid. To minimize the number of leads for application of voltages to the four EC electrode layers, the EC electrode layers on the both sides of the inner substrate are connected with each other by an angled strip of a sheet metal fitted on the inner substrate, and the EC electrode layers on the outer substrates are connected with each other by another angled strip of a sheet metal fitted into a marginal region of the space between the two outer substrates.
Abstract:
The invention relates to a receiving antenna disposed on or in a vehicle window glass such as the rear window glass or the windshield of an automobile. The antenna comprises, as a principal antenna element, a transparent and conductive film in the shape of a quadrilateral having two substantially parallel sides one of which is at a distance of 15-25 mm from the upper edge of the window glass and the other at a distance of 15-25 mm from the lower edge. The quadrilateral film may be so wide that the remaining two sides thereof extend along the two side edges of the window glass, respectively, at a distance of 15-25 mm from the respective side edges. This is suitable for reception of not only FM radio broadcast waves in the 76-90 MHz or 88-108 MHz band and TV broadcast waves in the 90-222 MHz band but also AM radio broadcast waves. When the antenna is mostly for reception of FM radio broadcast waves and/or TV broadcast waves, it is suitable that the transparent and conductive film is in the shape of a rectangle which is elongate in the direction substantially perpendicular to the upper and lower edges of the window glass and has a lateral width in the range from 50 to 250 mm.
Abstract:
The invention relates to an electrodeposition method for forming a film of an electrochemically synthesizable and functional substance, e.g. Prussian blue useful as an electrochromic material, on an electrode plate having a conductive coating film relatively high in surface resistivity such as a tin dioxide or indium trioxide film. A desired film of uniform thickness can be formed even when the electrode plate is as large as 40 cm square or is still larger by providing the electrode plate with an elongate auxiliary electrode element formed of, for example, a metal wire or foil, which is attached to the outer surface of the conductive coating film so as to extend at least along the whole periphery of the electrode plate.
Abstract:
Injection of a functional liquid into a display device cell having an inlet opening and a relatively narrow space between front and back substrates. The liquid is a liquid crystal for a liquid crystal display device or an electrolyte solution for an electrochromic device. The cell is placed in a chamber such that the inlet opening is in an uppermost section of the cell. Also a vessel containing the liquid is placed in the chamber, and vacuum is created in the chamber. In that state the inlet opening of the cell is connected to the liquid in the vessel by a pipe. After that the lever of the liquid surface in the vessel is suitably varied with respect to the level of the inlet opening of the cell by vertically moving the vessel containing the liquid and/or the cell, while an inactive gas is gradually introduced into the chamber to produce a controlled pressure difference between the interior of the cell and the inactive gas atmosphere in the chamber. By this method the injection of the liquid is accomplished easily and efficiently without producing bubbles in the display device cell and without distorting the planar and parallel substrates of the cell.
Abstract:
In one embodiment, a magnetic head includes at least one magnetic head element for reading from and/or writing to a magnetic medium, the element having an air bearing surface (ABS) facing toward a magnetic medium, an adhesive film including silicon nitride above the ABS having a characteristic of being formed under a water vapor partial pressure, and a protective film above the adhesive film, the protective film including carbon. Also, in another embodiment, a method includes forming an ABS of a magnetic head, the ABS being a surface of the magnetic head which is closest to a magnetic medium when in use, forming an adhesive film above the ABS of the magnetic head, the adhesive film being formed under a water vapor partial pressure, and forming a protective film above the adhesive film, the protective film including carbon.
Abstract:
A geographic data collecting system, comprising a distance measuring unit for projecting a distance measuring light and for measuring a distance to an object to be measured, a camera for taking an image in measuring direction, a display unit for displaying the pickup image, a touch panel provided to correspond to a screen position of the display unit, a tilt sensor for detecting a tilting of the measuring direction, and an arithmetic unit for calculating a distance to the object to be measured by giving consideration on the tilting in the measuring direction and a point-to-point distance as specified on the image by specifying two or more points of the object to be measured on a displayed image via the touch panel.