摘要:
A generating line of a casing surrounding an outer periphery of vanes of a stator disposed downstream of a rotor of the axial-flow compressor includes: a recessed region recessed outward in a radial direction from a position forward of a front edge of each of the vanes to a position rearward of a rear edge of the vane; and a protruding region bulging inward in the radial direction at an intermediate position of the recessed region in a front-rear direction thereof. Thus, a distribution of static pressure in the radial direction on a surface of the vane is improved by a first recessed portion forward of the protruding region, and the static pressure on the tip side is raised by a second recessed portion rearward of the protruding region.
摘要:
A turbine blade for an axial-flow turbine includes an intrados generating a positive pressure, and an extrados generating a negative pressure, wherein the intrados and the extrados are provided between a leading edge and a trailing edge. An inflection point is provided between a concave portion on an upstream side and a convex portion on a downstream side in a region extending from a position of 80% on the intrados to a rear throat, and the length of a normal line drawn downwards from the intrados of one of the turbine blades to an extrados of the other turbine blade has at least one maximum value in a region extending from a front throat of the one turbine blade to a rear throat. Thus, it is possible to disperse a shock wave generated from the intrados at the trailing edge to prevent the generation of a strong shock wave, thereby reducing the pressure loss caused by the shock wave. In addition, a speed-reducing area can be formed on the extrados generating the negative pressure to promote the transition from a laminar flow boundary layer to a turbulent flow boundary layer, thereby preventing the separation of the boundary layer caused by the interference with a shock wave to reduce the pressure loss.
摘要:
It is an object of the present invention to provide a stator blade for an axial-flow compressor, in which the wave drag due to the generation of a shock wave in a transonic speed range can be suppressed to the minimum. For this purpose, the stator blade in the axial-flow compressor has an intrados producing a positive pressure, and an extrados producing a negative pressure. Both of the intrados and the extrados are located on one side of a chord line. A first bulge and a second bulge are formed on the intrados of the stator blade at a location on the side of a leading edge and on the side of a trailing edge, respectively. Thus, the generation of a shock wave on the extrados can be moderated to reduce the wave drag by positively producing the separation of a boundary layer on the intrados by the first bulge. In addition, the boundary layer rendered unstable by the first bulge on the intrados can be stabilized again by the second bulge on the intrados and hence, the increase in frictional drag due to the separation of the boundary layer on the intrados can be suppressed to the minimum.
摘要:
A blade for an axial-flow turbine includes an intrados producing a positive pressure between a leading edge and a trailing edge, and an extrados producing a negative pressure. The intrados is formed at its rear portion with a flat surface portion connected to the trailing edge, and the extrados has a curved surface portion formed at least at a portion corresponding to the flat surface portion. The trailing edge of the turbine blade is pointed at its end. The angle of intersection between the intrados and the extrados at the trailing edge is a right angle or an acute angle. Thus, it is possible to inhibit the flowing of a gas from the intrados at the trailing edge toward the extrados and to decrease the degree of curvature of the extrados at the trailing edge portion to reduce the flow speed, thereby minimizing a shock wave generated at the trailing edge portion to reduce the pressure loss and enhance the performance of the turbine.
摘要:
A first bent portion bent toward an intrados and a second bent portion located in the rear of the first bent portion and bent toward an extrados are provided on a camber line on a trailing edge in the rear of 90% of a chord length of a turbine blade having an extremely low aspect ratio for an axial-flow turbine. The inclination of the camber line immediately in the rear of the second bent portion on the side of a blade root is substantially equal to the inclination of the camber line immediately in front of the first bent portion, and the curvature of the second bent portion is decreased from the side of the blade root toward a blade tip. As a result, a higher-pressure portion on the intrados which is a pressure surface of the turbine blade is displaced toward the trailing edge, and thus a secondary flow from the side of the blade tip toward the blade root can be suppressed, whereby a pressure loss particularly in the vicinity of the blade root can be suppressed to the minimum.
摘要:
A first bent portion bent toward an intrados and a second bent portion located in the rear of the first bent portion and bent toward an extrados are provided on a camber line on a trailing edge in the rear of 90% of a chord length of a turbine blade having an extremely low aspect ratio for an axial-flow turbine. The inclination of the camber line immediately in the rear of the second bent portion on the side of a blade root is substantially equal to the inclination of the camber line immediately in front of the first bent portion, and the curvature of the second bent portion is decreased from the side of the blade root toward a blade tip. As a result, a higher-pressure portion on the intrados which is a pressure surface of the turbine blade is displaced toward the trailing edge, and thus a secondary flow from the side of the blade tip toward the blade root can be suppressed, whereby a pressure loss particularly in the vicinity of the blade root can be suppressed to the minimum.
摘要:
A computer-implemented method of analyzing data representing the optimization of real-world designs of physical entities according to at least one criterion. Different modifications of the design are generated by a cyclic optimization algorithm. The design data is represented by unstructured triangular surface meshes. A displacement measure representing local differences between two design modifications of the different modifications is calculated. Performance difference between the two design modifications is calculated. The performance difference is represented by at least one criterion. Sensitivity information representing correlation between the displacement measure and the performance differences is outputted.
摘要:
A method for modifying an object design using a computer comprises the steps of: selecting a first sub-design of the object design comprising a first free form deformation geometry and a first free deformation control volume that is variable and adaptive; choosing a second sub-design comprising a second free form deformation geometry; and replacing the first geometry with the second geometry.
摘要:
A computer-implemented method of analyzing data representing the optimization of real-world designs of physical entities according to at least one criterion. Different modifications of the design are generated by a cyclic optimization algorithm. The design data is represented by unstructured triangular surface meshes. A displacement measure representing local differences between two design modifications of the different modifications is calculated. Performance difference between the two design modifications is calculated. The performance difference is represented by at least one criterion. Sensitivity information representing correlation between the displacement measure and the performance differences is outputted.
摘要:
An improved method for optimizing a design, based on direct manipulations of the object points of a design. In addition, the number and modifications of control points is kept as minimal as possible while the targeted movement of object points is realized and the automatic adaptation and generation of a set of control points for deformations which allows the movement of object points to desired positions. One aspect of the invention is to generate the transformation function f which is optimized to be able to realize desired changes of object parameters by means of control point variations. This optimization can be realized in a way that the mapping between the original coordinate system of the design and the spline coordinate system is not changed, so that no additional “freezing” process (the generation of the mapping between the coordinate systems) is necessary.