摘要:
A system, method and program product for adjusting an environmental variable of a fuse blow of an electronic fuse are disclosed. A mimic NFET is coupled to a fuse blow source voltage line, a fuse blow gate voltage line, and a chip ground in the same manner as the electronic fuse, except that the mimic NFET is not attached to a poly fuse link. The on current (ion) and off current (ioff) of the mimic NFET are measured to determine a blow current of the electronic fuse. The environmental variable is adjusted based on the determined blow current.
摘要:
A method of providing optimal fuse programming conditions by which an integrated circuit chip customer may program electronic fuses in the field, i.e., outside of the manufacturing test environment. An optimal fuse programming identifier, which is correlated to optimal fuse programming conditions, may be provided to the customer in readable fashion on the customer's IC chip. Accessing the optimal fuse programming identifier on the customer's IC chip, the customer may apply a fuse programming process in the field according to one or more correlated optimal fuse programming conditions.
摘要:
A system for performing device-specific testing and acquiring parametric data on custom integrated circuits, for example ASICs, such that each chip is tested individually without excessive test time requirements, additional silicon, or special test equipment. The testing system includes a device test structure integrated into unused backfill space in an ASIC design which tests a set of dummy devices that are identical to some of those of the ASIC. The device test structure includes control logic for designating the type of test and which device types to activate (e.g. pFETs or nFETs), a protection circuit for protecting the SPM when the test is inactive, an isolation circuit for isolating the devices under test (DUT) from any leakage current during test, and a decode circuit for providing test input (e.g. voltages) to the DUT. By controlling which devices to test and the voltage conditions of those devices, the system calculates the relative product yield and health of the line on a die by die basis.
摘要:
A design structure for providing optimal fuse programming conditions by which an integrated circuit chip customer may program electronic fuses in the field, i.e., outside of the manufacturing test environment. An optimal fuse programming identifier, which is correlated to optimal fuse programming conditions, may be provided to the customer in readable fashion on the customer's IC chip. Accessing the optimal fuse programming identifier on the customer's IC chip, the customer may apply a fuse programming process in the field according to one or more correlated optimal fuse programming conditions.
摘要:
A method of providing optimal fuse programming conditions by which an integrated circuit chip customer may program electronic fuses in the field, i.e., outside of the manufacturing test environment. An optimal fuse programming identifier, which is correlated to optimal fuse programming conditions, may be provided to the customer in readable fashion on the customer's IC chip. Accessing the optimal fuse programming identifier on the customer's IC chip, the customer may apply a fuse programming process in the field according to one or more correlated optimal fuse programming conditions.
摘要:
A system for performing device-specific testing and acquiring parametric data on custom integrated circuits, for example ASICs, such that each chip is tested individually without excessive test time requirements, additional silicon, or special test equipment. The testing system includes a device test structure integrated into unused backfill space in an ASIC design which tests a set of dummy devices that are identical to some of those of the ASIC. The device test structure includes control logic for designating the type of test and which device types to activate (e.g. pFETs or nFETs), a protection circuit for protecting the SPM when the test is inactive, an isolation circuit for isolating the devices under test (DUT) from any leakage current during test, and a decode circuit for providing test input (e.g. voltages) to the DUT. By controlling which devices to test and the voltage conditions of those devices, the system calculates the relative product yield and health of the line on a die by die basis.