摘要:
A method of error concealment that includes providing a first set of image data at a first time instant, providing a second set of image data at a second time instant, representing the first set of image data by a model of updating mixture of principal components (UMPC) to form a UMPC model having a plurality of components, receiving the second set of image data, wherein the second set of image data contains error-free data, and updating the UMPC model using the error-free data at the second time instant.
摘要:
A face recognition system and process for identifying a person depicted in an input image and their face pose. This system and process entails locating and extracting face regions belonging to known people from a set of model images, and determining the face pose for each of the face regions extracted. All the extracted face regions are preprocessed by normalizing, cropping, categorizing and finally abstracting them. More specifically, the images are normalized and cropped to show only a person's face, categorized according to the face pose of the depicted person's face by assigning them to one of a series of face pose ranges, and abstracted preferably via an eigenface approach. The preprocessed face images are preferably used to train a neural network ensemble having a first stage made up of a bank of face recognition neural networks each of which is dedicated to a particular pose range, and a second stage constituting a single fusing neural network that is used to combine the outputs from each of the first stage neural networks. Once trained, the input of a face region which has been extracted from an input image and preprocessed (i.e., normalized, cropped and abstracted) will cause just one of the output units of the fusing portion of the neural network ensemble to become active. The active output unit indicates either the identify of the person whose face was extracted from the input image and the associated face pose, or that the identity of the person is unknown to the system.
摘要:
A face recognition system and process for identifying a person depicted in an input image and their face pose. This system and process entails locating and extracting face regions belonging to known people from a set of model images, and determining the face pose for each of the face regions extracted. All the extracted face regions are preprocessed by normalizing, cropping, categorizing and finally abstracting them. More specifically, the images are normalized and cropped to show only a persons face, categorized according to the face pose of the depicted person's face by assigning them to one of a series of face pose ranges, and abstracted preferably via an eigenface approach. The preprocessed face images are preferably used to train a neural network ensemble having a first stage made up of a bank of face recognition neural networks each of which is dedicated to a particular pose range, and a second stage constituting a single fusing neural network that is used to combine the outputs from each of the first stage neural networks. Once trained, the input of a face region which has been extracted from an input image and preprocessed (i.e., normalized, cropped and abstracted) will cause just one of the output units of the fusing portion of the neural network ensemble to become active. The active output unit indicates either the identify of the person whose face was extracted from the input image and the associated face pose, or that the identity of the person is unknown to the system.
摘要:
A method of increasing the frame rate of an image of a speaking person comprises monitoring an audio signal indicative of utterances by the speaking person and the associated video signal. The audio signal corresponds to one or more fields or frames to be reconstructed, and individual portions of the audio signal are associated with facial feature information. The facial information includes mouth formation and position information derived from phonemes or other speech-based criteria from which the position of a speaker's mouth may be reliably predicted. A field or frame of the image is reconstructed using image features extracted from the existing frame and by utilizing the facial feature information associated with a detected phoneme.
摘要:
A method and apparatus for generating region frames from video frames are disclosed which employs an industry standard encoder to lessen the negative impact on the quality of the transmitted video sequence while consuming fewer bits. The invention utilizes image segmentation and color replacement techniques to create the region frames. Each region frame includes a subject region, zero or more previously segmented regions and zero or more non-subject regions. The subject region is defined by the pixels of the original video frame. The previously segmented regions and non-subject regions are assigned replacement pixels P.sub.n,y and C.sub.n, respectively. The replacement pixel C.sub.n is chosen to indicate a color that is not likely to be confused with any color in the subject region R.sub.n. The replacement pixels P.sub.n,y are chosen such that the compression ratio of the region frame data is maximized. Using the region frames, content based scalability can be provided without the need for special encoders and/or channels having a wider bandwidth. The decoder may comprise color or chroma keying apparatus or circuitry keying on the replacement color C.sub.n. Instead of keying on a single value, two thresholds may be assigned to define a boundary condition or a subject semi-transparent region. The decoder is forwarded data of the two thresholds and a flag is sent to indicate the dial boundary or semi-transparent region coding. A blending process blends the foreground and background of the semi-transparent object.
摘要:
A method and apparatus for generating region frames from video frames are disclosed which employs an industry standard encoder to lessen the negative impact on the quality of the transmitted video sequence while consuming fewer bits. The method and apparatus utilizes image segmentation and color replacement techniques to create the region frames. Each region frame includes a subject region, zero or more previously segmented regions and zero or more non-subject regions. The subject region is defined by the pixels of the original video frame. The previously segmented regions and non-subject regions are assigned replacement pixels P.sub.n,y and C.sub.n, respectively. The replacement pixel C.sub.n is chosen to indicate a color that is not likely to be confused with any color in the subject region R.sub.n. The replacement pixels P.sub.n,y are chosen such that the compression ratio of the region frame data is maximized. Using the region frames, content based scalability can be provided without the need for special encoders and/or channels having a wider bandwidth.
摘要:
A method for estimating a vanishing point in a roadway using a current image generated by a camera on a vehicle includes defining an exemplary vanishing point for each of a plurality of sample images, identifying features within each of the plurality of sample images, monitoring the current image generated by the camera, identifying features within the current image, matching the current image to at least one of the sample images based upon the identified features within the current image and the identified features within the plurality of sample images, determining a vanishing point based upon the matching and the exemplary vanishing points for each of the matched sample images, and utilizing the vanishing point to navigate the vehicle.
摘要:
A face recognition system and process for identifying a person depicted in an input image and their face pose. This system and process entails locating and extracting face regions belonging to known people from a set of model images, and determining the face pose for each of the face regions extracted. All the extracted face regions are preprocessed by normalizing, cropping, categorizing and finally abstracting them. More specifically, the images are normalized and cropped to show only a persons face, categorized according to the face pose of the depicted person's face by assigning them to one of a series of face pose ranges, and abstracted preferably via an eigenface approach. The preprocessed face images are preferably used to train a neural network ensemble having a first stage made up of a bank of face recognition neural networks each of which is dedicated to a particular pose range, and a second stage constituting a single fusing neural network that is used to combine the outputs from each of the first stage neural networks. Once trained, the input of a face region which has been extracted from an input image and preprocessed (i.e., normalized, cropped and abstracted) will cause just one of the output units of the fusing portion of the neural network ensemble to become active. The active output unit indicates either the identify of the person whose face was extracted from the input image and the associated face pose, or that the identity of the person is unknown to the system.
摘要:
Secure data transmission apparatus comprises a data translator for translating an input string of signals, each signal having incomplete information for identifying an alphanumeric character, into a first encryption key. A data encrypter receives a first encryption key, a choice of encryption algorithm and a message and outputs an encrypted message according to the selected algorithm. The apparatus may be applied whenever the user is confronted with telecommunications apparatus that provides a limited input capability and no means for encrypting a message for transmission to an end user. In this manner, for example, a user may authenticate their name for display on caller identification plus name apparatus and the called party can be assured, before answering their line, that the call is from the party having the displayed name.
摘要:
A method and apparatus for generating region frames from video frames are disclosed which employs an industry standard encoder to lessen the negative impact on the quality of the transmitted video sequence while consuming fewer bits. The invention utilizes image segmentation and color replacement techniques to create the region frames. Each region frame includes a subject region, zero or more previously segmented regions and zero or more non-subject regions. The subject region is defined by the pixels of the original video frame. The previously segmented regions and non-subject regions are assigned replacement pixels P.sub.n,y and C.sub.n, respectively. The replacement pixel C.sub.n is chosen to indicate a color that is not likely to be confused with any color in the subject region R.sub.n. The replacement pixels P.sub.n,y are chosen such that the compression ratio of the region frame data is maximized. Using the region frames, content based scalability can be provided without the need for special encoders and/or channels having a wider bandwidth. The decoder may comprise color or chroma keying apparatus or circuitry keying on the replacement color C.sub.n. Instead of keying on a single value, two thresholds may be assigned to define a boundary condition or a subject semi-transparent region. The decoder is forwarded data of the two thresholds and a flag is sent to indicate the special boundary or semi-transparent region coding. A blending process blends the foreground and background of the semi-transparent object.