摘要:
A method of producing a thin metal wire having a circular cross section is disclosed. The wire is produced by providing a molten metal within an extruding device having a nozzle therein. A strip of liquid coolant in motion at a speed of 200 m/min or more is then provided. The molten metal is extruded into the strip of liquid coolant in order to cool and solidify the metal and form the thin metal wire. A high quality thin metal wire is obtained by precisely adjusting the speed of the strip of liquid coolant relative to the speed of the extruded molten metal as well as the angle at which the molten metal is extruded into the liquid coolant strip. The method is capable of economically and continuously producing a high quality thin metal wire on a commercial scale. The method is effective in directly producing a thin metal wire having an amorphous, a nonequilibrium crystalline, or microcrystalline structure.
摘要:
An amorphous Co-based metal filament having a circular cross-section made of an alloy composed mainly of Co-Si-B or Co-Me-Si-B (wherein Me is at least one metal selected from the group consisting of Fe, Ni, Cr, Ta, Nb, V, Mo, Mn, W and Zr). This filament is produced by jetting the above alloy into a rotating member containing therein a cooling liquid through a spinning nozzle having a hole diameter which is determined according to the amorphous metal-forming ability (critical thickness to form an amorphous phase) to thereby cool-solidify the jetted molten alloy and form a filament, and then winding the filament continuously on the inner walls of the rotating member by the rotary centrifugal force thereof. This amorphous metal filament is corrosion resistant, is tough and has high electromagnetic characteristics, and is very useful as industrial materials, such as electric and electronic parts, composite materials and fibrous materials.
摘要:
Amorphous metal filaments having a substantially circular cross-section comprising an alloy containing Fe as a main component, and a process for producing such amorphous metal filaments, are described; the process comprises jetting a molten alloy having amorphism forming ability into a revolving body containing a cooling liquid from a spinning nozzle to form a solidified filament by cooling, and continuously winding the filament on the inner wall of said revolving body by means of the centrifugal force of said revolving body, wherein the circumferential rate of revolution of said revolving body is equal to or higher than the rate of jetting of molten metal from the spinning nozzle. These metal filaments have good corrosion resistance, toughness, and high magnetic permeability and are very useful in various industrial applications, such as electric and electronic parts, materials for reinforcement, and fiber materials.
摘要:
An amorphous Co-based metal filament having a circular cross-section made of an alloy composed mainly of Co-Si-B or Co-Me-Si-B (wherein Me is at least one metal selected from the group consisting of Fe, Ni, Cr, Ta, Nb, V, Mo, Mn, W and Zr). This filament is produced by jetting the above alloy into a rotating member containing therein a cooling liquid through a spinning nozzle having a hole diameter which is determined according to the amorphous metal-forming ability (critical thickness to form an amorphous phase) to thereby cool-solidify the jetted molten alloy and form a filament, and then winding the filament continuously on the inner walls of the rotating member by the rotary centrifugal force thereof. This amorphous metal filament is corrosion resistant, is tough and has high electromagnetic characteristics, and is very useful as industrial materials, such as electric and electronic parts, composite materials and fibrous materials.
摘要:
A process for the production of a fine amorphous metallic wire is described, comprising melt-spinning an iron family element base alloy having an amorphous substance-forming ability to obtain a fine amorphous metallic wire, and passing the thus-formed fine amorphous metallic wire through a die so as to draw within an area reduction percentage range of from about 5 to about 90%. The thus-produced fine amorphous metallic wire of the iron family element base system is excellent in heat resistance, corrosion resistance, electromagnetic characteristics, and has excellent mechanical properties, such as breaking strength and a degree of drawing at break. Thus, it is very useful for various industrial materials such as electric and electronic parts, composite materials, and fibrous materials.
摘要:
Amorphous metal filaments having a substantially circular cross-section comprising an alloy containing Fe as a main component, and a process for producing such amorphous metal filaments, are described; the process comprises jetting a molten alloy having amorphism forming ability into a revolving body containing a cooling liquid from a spinning nozzle to form a solidified filament by cooling, and continuously winding the filament on the inner wall of said revolving body by means of the centrifugal force of said revolving body, wherein the circumferential rate of revolution of said revolving body is equal to or higher than the rate of jetting of molten metal from the spinning nozzle. These metal filaments have good corrosion resistance, toughness, and high magnetic permeability and are very useful in various industrial applications, such as electric and electronic parts, materials for reinforcement, and fiber materials.
摘要:
An amorphous iron-based alloy which comprises not more than 25 atom % of Si and 2.5 to 25 atom % of B (providing that the sum of Si and B falls in the range of 15 to 35 atom %), 1.5 to 20 atom % of Cr, 0.2 to 10 atom % of either or both of P and C, and the balance to make up 100 atom % substantially of Fe excels in fatigue property. An amorphous iron-based alloy which contains not more than 30 atom % of at least one element selected from the group consisting of Co, Ni, Ta, Nb, Mo, W, V, Mn, Ti, Al, Cu and Zr in addition to the components making up the aforementioned alloy excels in amorphous texture of forming ability and fatigue property. Since these alloys are also excellent in tensile strength at fracture, thermal resistance, corrosionproofness, and electromagnetic property, they prove highly useful as electromagnetic materials and as reinforcements in various industrial materials.
摘要:
An aluminum-based alloy having the general formula Al.sub.x L.sub.y M.sub.z (wherein L is Mn or Cr; M is Ni, Co, and/or Cu; and x, y, and z, representing a composition ratio in atomic percentages, satisfy the relationships x+y+z=100, 75.ltoreq.x.ltoreq.95, 2.ltoreq.y.ltoreq.15, and 0.5.ltoreq.z.ltoreq.10) having a metallographic structure comprising a quasi-crystalline phase possesses high strength and high rigidity. In order to enhance the ductility and toughness of the aluminum-based alloy, the atomic percentage of M may be further limited to 0.5.ltoreq.z.ltoreq.4, and more preferably to 0.5.ltoreq.z.ltoreq.3. The aluminum-based alloy is useful as a structural material for aircraft, vehicles and ships, and for engine parts; as material for sashes, roofing materials, and exterior materials for use in construction; or as materials for use in marine equipment, nuclear reactors, and the like.
摘要:
Hard magnetic materials of the present invention contain at least one element of Fe, Co and Ni as a main component, at least one element M of Zr, Nb, Ta and Hf, at least one rare earth element R and B. The texture of the materials has at least 70% of fine crystalline phase having an average grain size of 100 nm or less, and the residue having an amorphous phase, the fine crystalline phase mainly composed of bcc-Fe or bcc-Fe compound, Fe--B compound and/or R.sub.2 Fe.sub.14 B.sub.1.
摘要:
An Fe-based soft magnetic alloy having a high saturated magnetic flux density and having a composition represented by formula (I) below: (Fe.sub.1-a Q.sub.a).sub.b B.sub.x T.sub.y T'.sub.z (I) wherein Q represents at least one element selected from the group consisting of Co and Ni; T represents at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Mo and W, with Zr and/or Hf being always included; T' represents at least one element selected from the group consisting of Cu, Ag, Au, Ni, Pd and Pt; a, b, x, y and z are real numbers satisfying relationships below: 0.ltoreq.a.ltoreq.0.05, 0.ltoreq.b.ltoreq.93 atomic %, 0.5.ltoreq.x.ltoreq.16 atomic %, 4.ltoreq.y.ltoreq.10 atomic %, 0.ltoreq.z.ltoreq.4.5 atomic % provided that when 0
摘要翻译:具有高饱和磁通密度且具有由下式(I)表示的组成的Fe基软磁合金:(Fe1-aQa)bBxTyT'z(I)其中Q表示选自以下的至少一种元素: Co和Ni; T表示选自Ti,Zr,Hf,V,Nb,Ta,Mo和W中的至少一种元素,其中始终包括Zr和/或Hf; T'表示选自Cu,Ag,Au,Ni,Pd和Pt中的至少一种元素; a,b,x,y和z是满足以下关系的实数:0 = a = 0.05,0