Abstract:
This spatial division multiplexing (SDM) in power-limited optical communication systems. In general, an SDM optical transmission system may be configured to increase data capacity over the data capacity of a non-SDM optical transmission system while maintaining power consumption at or below that of the existing non-SDM optical transmission system. To realize such an improvement in performance without increasing power consumption, an example SDM optical transmission may be constructed by reducing system bandwidth, reducing and/or altering equipment for filtering, reducing optical amplifier spacing, reducing operational amplifier power consumption, etc. In this manner, increased data transmission performance may be realized even where available power may be strictly limited.
Abstract:
An adaptive equalizer with coefficients determined by averaging an estimated filter coefficient over a number, N, of past and future symbols. Estimated filter coefficients may be optimized by optimization of the number N, an averaging window function and a scaling factor using a metric. The metric also allows estimation of the amount of noise that may be compensated by an adaptive equalizer consistent with the present disclosure.
Abstract:
This spatial division multiplexing (SDM) in power-limited optical communication systems. In general, an SDM optical transmission system may be configured to increase data capacity over the data capacity of a non-SDM optical transmission system while maintaining power consumption at or below that of the existing non-SDM optical transmission system. To realize such an improvement in performance without increasing power consumption, an example SDM optical transmission may be constructed by reducing system bandwidth, reducing and/or altering equipment for filtering, reducing optical amplifier spacing, reducing operational amplifier power consumption, etc. In this manner, increased data transmission performance may be realized even where available power may be strictly limited.
Abstract:
This spatial division multiplexing (SDM) in power-limited optical communication systems. In general, an SDM optical transmission system may be configured to increase data capacity over the data capacity of a non-SDM optical transmission system while maintaining power consumption at or below that of the existing non-SDM optical transmission system. To realize such an improvement in performance without increasing power consumption, an example SDM optical transmission may be constructed by reducing system bandwidth, reducing and/or altering equipment for filtering, reducing optical amplifier spacing, reducing operational amplifier power consumption, etc. In this manner, increased data transmission performance may be realized even where available power may be strictly limited.
Abstract:
An adaptive equalizer with coefficients determined by averaging an estimated filter coefficient over a number, N, of past and future symbols. Estimated filter coefficients may be optimized by optimization of the number N, an averaging window function and a scaling factor using a metric. The metric also allows estimation of the amount of noise that may be compensated by an adaptive equalizer consistent with the present disclosure.