Method and apparatus for non-invasively measuring the amount of glucose
in blood
    1.
    发明授权
    Method and apparatus for non-invasively measuring the amount of glucose in blood 有权
    用于非侵入性测量血液中葡萄糖量的方法和装置

    公开(公告)号:US6067463A

    公开(公告)日:2000-05-23

    申请号:US225430

    申请日:1999-01-05

    CPC分类号: A61B5/1455 A61B5/14532

    摘要: A method and apparatus for measuring the concentration of an analyte of interest, e.g. glucose, in blood non-invasively, i.e., without penetrating the skin or obtaining a biological sample from the body of a patient. The method and apparatus uses a plurality of measurement channels with appropriate wavelengths of interest to control variations of signal and to separate the contribution of the analyte of interest from those of interfering compounds. The method and apparatus of this invention can also be adapted to allow a portion of a body part to be engorged with blood to bring about greater accuracy in optical measurements. In the method of this invention, at least two similar, but not identical, measurements are made concurrently. For example, at least two measurements can be made with similar, but not identical, wavelengths of electromagnetic radiation. The two wavelengths should not be overlapping to allow maximum non-identity. By making measurements concurrently, each measurement channel in the system experiences variations as they occur substantially simultaneously in all channels. By selecting one of the channels as a reference channel and by normalizing the optical measurements of the other channels to this reference channel, the variations common to all channels are eliminated. Removing these common variations from the optical measurements by normalization, such as by calculating ratios of the measurement of each of the measuring channels to that of the reference channel, will allow the actual changes of the signal for a specific analyte of interest to be measured.

    摘要翻译: 用于测量所关注的分析物的浓度的方法和装置,例如, 葡萄糖在血液中非侵入性地,即不渗透皮肤或从患者的身体获得生物样品。 该方法和装置使用具有适当的感兴趣波长的多个测量通道来控制信号的变化并分离感兴趣分析物对干扰化合物的贡献。 本发明的方法和装置还可以适于允许身体部分的一部分被血液吸收以在光学测量中带来更高的精度。 在本发明的方法中,同时进行至少两个相似但不相同的测量。 例如,可以用类似但不相同的电磁辐射波长进行至少两次测量。 两个波长不应重叠,以允许最大的非身份。 通过同时进行测量,系统中的每个测量通道在所有通道中基本上同时发生变化。 通过选择一个通道作为参考通道,并将其他通道的光学测量标准化到该参考通道,可以消除所有通道共用的变化。 通过归一化从光学测量中去除这些常见的变化,例如通过计算每个测量通道的测量与参考通道的测量的比率,将允许测量特定分析物的信号的实际变化。