摘要:
An example optic module verification device for use in periodic normalization of a testing machine used to test samples in wells is disclosed. The example testing machine includes a plurality of photon counters that each count photons emitted from different wells. The example verification device includes a plurality of verification wells located so as to each be associated with one of the photon counters when used in the testing machine. The example device also includes a photon emitter in each verification well, each photon emitter including a C14 source, a scintillator adjacent the C14 source, and a filter over the scintillator. The example photon emitters each have a determined initial base value for emitted photons, and each photon emitter is positioned in its verification well to emit photons through the filter to the associated photon counter when used in the testing machine.
摘要:
An optic module verification device for normalizing between X photon counters, including a verification tray with X verification wells and a modular photon emitter in each verification well. Each photon emitter includes a spring, a Beta source disk, a scintillator disk adjacent the Beta source disk, and a neutral density filter over the scintillator disk, all of which are encapsulated in a cylindrical chamber with the filter adjacent an opening on one end of the chamber and the spring biasing the Beta source disk and the scintillator disk toward the opening. The device is periodically used for normalization, and may be updated when emitted photons fall below a desired level by replacing the scintillator disk and then determining a new normalized reference values for each photon emitter.
摘要:
A method for collecting optical data at two morphologically similar, substantially non-overlapping, and preferably adjacent, areas on the surface of a tissue, while the temperature in each area is being maintained or modulated according to a temperature program. The optical data obtained are inserted into a mathematical relationship, e.g., an algorithm, that can be used to predict a disease state (such as the diabetes mellitus disease state) or the concentration of an analyte for indicating a physical condition (such as blood glucose level). This invention can be used to differentiate between disease status, such as, for example, diabetic and non-diabetic. The method involves the generation of a calibration (or training) set that utilizes the relationship between optical signals emanating from the skin under different thermal stimuli and disease status, e.g., diabetic status, established clinically. This calibration set can be used to predict the disease state of other subjects. Structural changes, as well as circulatory changes, due to a disease state are determined at two morphologically similar, but substantially non-overlapping areas on the surface of human tissue, e.g., the skin of a forearm, with each area being subjected to different temperature modulation programs. In addition to determination of a disease state, this invention can also be used to determine the concentration of an analyte in the tissues. This invention also provides an apparatus for the determination of a disease state, such as diabetes, or concentration of an analyte, such as blood glucose level, by the method of this invention.
摘要:
Apparatus and method for performing a chemiluminescence assay involving the immobilization of a chemiluminescent reaction complex to a solid, porous element. The solid, porous element is preferably treated to provide an immobilizing interaction with the chemiluminescent reaction complex wherein the chemiluminescent reaction complex is thereby immobilized to the solid, porous element. The activating and reading of the chemiluminescent reaction are separately performed by evenly distributing a concentrated chemiluminescent activating solution to form a puddle on the surface of the porous element to which the chemiluminescent reaction complex is immobilized.
摘要:
A disposable device suitable for performing automated solid-state diagnostic assays which employs microparticles to complex an analyte and where the microparticle complex becomes retained and immobilized on a fibrous matrix such that the presence of analyte on the microparticles can be detected by an optical device. A device is disclosed having a shallow sample well for receiving a sample and reagents for forming a reaction mixture, a read well having (a) an entrance port and wash receiving structure for receiving a quantity of sample and assay reagents, (b) a fibrous matrix for retaining and immobilizing microparticle/analyte complexes for detection, the fibrous matrix positioned below the wash receiving structure, and having an average spatial separation of fibers greater than the average diameter of the microparticles and (c) a structure below the fibrous matrix for assisting the flow of sample and assay reagents through the fibrous matrix, such as an absorbent material or vacuum below the fibrous matrix and a passage means communicating between the shallow sample well and the read well where the sample and reaction mixtures can be transferred and washed from the shallow sample well into the read well without being contacted by any apparatus.
摘要:
An example optic module verification device for use in periodic normalization of a testing machine used to test samples in wells is disclosed. The example testing machine includes a plurality of photon counters that each count photons emitted from different wells. The example verification device includes a plurality of verification wells located so as to each be associated with one of the photon counters when used in the testing machine. The example device also includes a photon emitter in each verification well, each photon emitter including a C14 source, a scintillator adjacent the C14 source, and a filter over the scintillator. The example photon emitters each have a determined initial base value for emitted photons, and each photon emitter is positioned in its verification well to emit photons through the filter to the associated photon counter when used in the testing machine.
摘要:
A method for noninvasive measurement of glucose in a tissue of a subject, including the steps of bringing an adaptation device, which has a shape similar to a measurement probe, into contact with a skin part of a subject for stretching the skin part of the subject under a pressure that is higher than a pressure per unit area applied by the measurement probe during the noninvasive measurement, maintaining the contact for a predetermined period of time followed by relieving the contact, bringing the measurement probe into contact with the stretched skin part of the subject for the noninvasive measurement, collecting signals emitted from the subject, and estimating a glucose concentration based on the collected signals.
摘要:
Devices and methods for non-invasively measuring at least one parameter of a sample, such as the presence or concentration of an analyte, in a body part wherein the temperature is controlled. The present invention measures light that is reflected, scattered, absorbed, or emitted by the sample from an average sampling depth, dav, that is confined within a temperature controlled region in the tissue. This average sampling depth is preferably less than 2 mm, and more preferably less than 1 mm. Confining the sampling depth into the tissue is achieved by appropriate selection of the separation between the source and the detector and the illumination wavelengths. In another aspect, the invention involves a method and apparatus for non-invasively measuring at least one parameter of a body part with temperature stepping. In another aspect, the invention involves a method and apparatus for non-invasively measuring at least one parameter of a body part with temperature modulation. In another aspect, the invention provides an improved method of measuring at least one parameter of a tissue sample comprising the steps of: (a) lowering the temperature of said tissue sample to a temperature that is lower than the normal physiological temperature of the body; and (b) determining at least one optical property of said tissue sample.
摘要:
Apparatus and method for non-invasively measuring at least one optical parameter of a sample, particularly a sample of tissue that comprises a plurality of layers. The at least one parameter can be used to determine the presence or concentration of an analyte of interest in the sample of tissue. The apparatus and method of the present invention (1) measure light that is substantially reflected, scattered, absorbed, or emitted from a shallower layer of the sample of tissue, (2) measure light that is substantially reflected, scattered, absorbed, or emitted from a deeper layer of the sample of tissue, (3) determine at least one optical parameter for each of these layers, and (4) account for the effect of the shallower layer on the at least one optical parameter of the deeper layer. Specifying the sampling depth allows determinations of the optical properties of a specific layer of the sample of the tissue, e.g., dermis, and decreases interference from other layers, e.g., stratum corneum and epidermis, in these determinations.