Positive electrode material for rechargeable lithium ion batteries

    公开(公告)号:US12300806B2

    公开(公告)日:2025-05-13

    申请号:US17007464

    申请日:2020-08-31

    Abstract: A bimodal lithium transition metal oxide based powder mixture comprises a first and a second lithium transition metal oxide based powder. The first powder comprises particles of a material A comprising the elements Li, a transition metal based composition M and oxygen. The first powder has a particle size distribution characterized by a (D90−D10)/D50≤1.5. The second powder comprises a material B having single crystal particles, said particles having a general formula Li+bN′−bO2, wherein −0.03≤b≤0.10, and N′=NixM″yCozEd, wherein 0.30≤x≤0.92, 0.05≤y≤0.40, 0.05≤z≤0.40 and 0≤d≤0.10, wherein M″ is one or both of Mn or Al, and E is a dopant different from M″. The first powder has an average particle size D50 between 10 and 40 μm. The second powder has a D50 between 2 and 4.5 μm. The weight ratio of the second powder in the mixture is between 15 and 60 wt %.

    Methods for preparing positive electrode material for rechargeable lithium ion batteries

    公开(公告)号:US12255326B2

    公开(公告)日:2025-03-18

    申请号:US17041022

    申请日:2019-03-13

    Abstract: A method for preparing a powderous positive electrode material comprising single crystal monolithic particles and having a general formula
    Li1+a((Niz(Ni1/2Mn1/2)yCox)1-k Ak)1-aO2, wherein A is a dopant, −0.03≤a≤0.06, 0.05≤x≤0.35, 0.10≤z≤0.95, x+y+z=1 and k≤0.05 is described. The method comprises providing a mixture comprising a Ni- and Co- bearing precursor and a Li bearing precursor, subjecting the mixture to a multiple step sintering process whereby in the final sintering step a sintered lithiated intermediate material is obtained comprising agglomerated primary particles having a primary particle size distribution with a D50 between 2.0 and 8.0 μm, subjecting the lithiated intermediate material to a wet ball milling step to deagglomerate the agglomerated primary particles and obtain a slurry comprising deagglomerated primary particles, separating the deagglomerated primary particles from the slurry, and heat treating the deagglomerated primary particles at a temperature between 300° C. and at least 20° C. below the temperature in the final sintering step.

Patent Agency Ranking