Abstract:
A method of fabricating a combustor thermal shield comprising a combustor panel, a cooling feature, and an attachment feature, the combustor thermal shield to be used in a gas turbine engine combustor, includes shaping a sheet of material used to form the combustor panel. The method also includes additively manufacturing the cooling feature onto the sheet of material forming the combustor panel. The method also includes attaching the attachment feature to the sheet of material forming the combustor panel. The method also includes curving the sheet of material forming the combustor panel to achieve a curve profile according to a design of the gas turbine engine combustor.
Abstract:
A method for working an airfoil cluster is disclosed. The method may include attaching a first datum to a first portion of the airfoil cluster and a second datum to a second portion of the airfoil cluster; adding material to at least one of the first portion and the second portion; and joining the first portion to the second portion, the first and second datums substantially aligned in a common plane spaced away from the first and second portions.
Abstract:
A method of fabricating a combustor thermal shield comprising a combustor panel, a cooling feature, and an attachment feature, the combustor thermal shield to be used in a gas turbine engine combustor, includes shaping a sheet of material used to form the combustor panel. The method also includes additively manufacturing the cooling feature onto the sheet of material forming the combustor panel. The method also includes attaching the attachment feature to the sheet of material forming the combustor panel. The method also includes curving the sheet of material forming the combustor panel to achieve a curve profile according to a design of the gas turbine engine combustor.
Abstract:
A method for working an airfoil cluster is disclosed. The method may include attaching a first datum to a first portion of the airfoil cluster and a second datum to a second portion of the airfoil cluster; adding material to at least one of the first portion and the second portion; and joining the first portion to the second portion, the first and second datums substantially aligned in a common plane spaced away from the first and second portions.
Abstract:
A method for working an airfoil cluster is disclosed. The method may include attaching a first datum to a first portion of the airfoil cluster, and joining a second portion of the airfoil cluster to the first portion, the second portion having a second datum substantially aligned with the first datum in a common plane spaced away from the first and second portions.
Abstract:
A method of fabricating airfoil cluster includes providing an airfoil cluster that has a pair of spaced-apart airfoils that extend from a common platform wall. The airfoil cluster is then divided through the common platform wall to provide separate first and second airfoil segments. At least one cooling hole is then formed in at least one of the first and second airfoil segments. The segments are then metallurgically fused together in a distinct metallurgical joint in the common platform wall.
Abstract:
A method for working an airfoil cluster is disclosed. The method may include attaching a first datum to a first portion of the airfoil cluster, and joining a second portion of the airfoil cluster to the first portion, the second portion having a second datum substantially aligned with the first datum in a common plane spaced away from the first and second portions.