Abstract:
A method for working an airfoil cluster is disclosed. The method may include attaching a first datum to a first portion of the airfoil cluster and a second datum to a second portion of the airfoil cluster; adding material to at least one of the first portion and the second portion; and joining the first portion to the second portion, the first and second datums substantially aligned in a common plane spaced away from the first and second portions.
Abstract:
A seal for a gas turbine engine includes a top, a bottom, a left side, a right side, a back and a front. The back is parallel to the front and the left side is parallel to the right side such that a non-square shape is formed by the intersection of the back, the left side, the front and the right side. The top includes a first vane mating surface and the bottom includes a second vane mating surface.
Abstract:
A casting, mold and method for producing a casting are disclosed. The casting may have an area of small thermal mass and an area of large thermal mass. The method may comprise providing a casting having a work product and an appendage engaged to, and suspended over, the work product between the area of small thermal mass and the area of large thermal mass, and controllably cooling the work product using the appendage.
Abstract:
A method for working an airfoil cluster is disclosed. The method may include attaching a first datum to a first portion of the airfoil cluster and a second datum to a second portion of the airfoil cluster; adding material to at least one of the first portion and the second portion; and joining the first portion to the second portion, the first and second datums substantially aligned in a common plane spaced away from the first and second portions.
Abstract:
A gas turbine engine component includes a body defining a cooling airflow passage thereat configured for directing a cooling airflow therethrough. A plurality of turbulators are positioned at at least one passage wall of the cooling airflow channel. Each turbulator of the plurality of turbulators includes a plurality of facets extending outwardly from a central portion. A gas turbine engine includes a combustor and a plurality of gas turbine engine components positioned in fluid communication with the combustor. Each component includes a body defining a cooling airflow passage thereat configured for directing a cooling airflow therethrough. A plurality of turbulators are located at at least one passage wall of the cooling airflow channel, each turbulator of the plurality of turbulators including a plurality of facets extending outwardly from a central portion.
Abstract:
A casting, mold and method for producing a casting are disclosed. The casting may have an area of small thermal mass and an area of large thermal mass. The method includes providing a casting having a work product and an appendage engaged to, and suspended over, the work product between the area of small thermal mass and the area of large thermal mass, and controllably cooling the work product using the appendage.
Abstract:
A method for working an airfoil cluster is disclosed. The method may include attaching a first datum to a first portion of the airfoil cluster, and joining a second portion of the airfoil cluster to the first portion, the second portion having a second datum substantially aligned with the first datum in a common plane spaced away from the first and second portions.
Abstract:
A seal for a gas turbine engine includes a top, a bottom, a left side, a right side, a back and a front. The back is parallel to the front and the left side is parallel to the right side such that a non-square shape is formed by the intersection of the back, the left side, the front and the right side. The top includes a first vane mating surface and the bottom includes a second vane mating surface.
Abstract:
A method of fabricating airfoil cluster includes providing an airfoil cluster that has a pair of spaced-apart airfoils that extend from a common platform wall. The airfoil cluster is then divided through the common platform wall to provide separate first and second airfoil segments. At least one cooling hole is then formed in at least one of the first and second airfoil segments. The segments are then metallurgically fused together in a distinct metallurgical joint in the common platform wall.
Abstract:
A method for working an airfoil cluster is disclosed. The method may include attaching a first datum to a first portion of the airfoil cluster, and joining a second portion of the airfoil cluster to the first portion, the second portion having a second datum substantially aligned with the first datum in a common plane spaced away from the first and second portions.