Abstract:
Embodiments of the invention are directed to ONO pincer ligands that can be in a trianionic, protonated or protonated equivalent form. The ONO pincer ligand can be combined with a metal comprising compound to form an ONO pincer ligand comprising transition metal complex. By choice of the ONO pincer ligand structure, the steric and electronic properties of the metal complexes therefrom can be controlled. The ONO pincer ligands comprise a central nitrogen atom that is disubstituted with a pair of three atom comprising bridges where the three atoms are a pair of sp2 hybridized carbons and an sp3 hybridized carbon.
Abstract:
Embodiments of the invention are directed to bimetallic substituted triazole compounds and methods to prepare the compounds. The compounds include at least one 1,2,3-triazole that is substituted by two metal ions at the 1 and 4 or 5 positions of the triazole ring. An iClick reaction between a metal acetylide and a metal azide results in the bimetallic substituted triazole ring. Depending on the metal acetylide and the metal azide used, monomeric bimetallic substituted triazole compounds, oligomeric bimetallic triazole compounds, or polymeric bimetallic triazole compounds are formed. Polymeric bimetallic triazole compounds can be linear, branched, ladder, two-dimensional network, or three-dimensional networks.
Abstract:
Embodiments of the invention are directed to ONO pincer ligands that can be in a trianionic, protonated or protonated equivalent form. The ONO pincer ligand can be combined with a transition metal comprising compound to form an ONO pincer ligand comprising transition metal complex. By choice of the ONO pincer ligand structure, the steric and electronic properties of the transition metal complexes therefrom can be controlled. The ONO pincer ligands comprise a central nitrogen atom that is disubstituted with a pair of three atom comprising bridges where the three atoms are three sp2 hybridized carbons or the three atoms are a pair of sp2 hybridized carbons and an sp3 hybridized carbon or silicon.
Abstract:
Embodiments of the invention are directed to ONO pincer ligands that can be in a trianionic, protonated or protonated equivalent form. The ONO pincer ligand can be combined with a metal comprising compound to form an ONO pincer ligand comprising transition metal complex. By choice of the ONO pincer ligand structure, the steric and electronic properties of the metal complexes therefrom can be controlled. The ONO pincer ligands comprise a central nitrogen atom that is disubstituted with a pair of three atom comprising bridges where the three atoms are a pair of sp2 hybridized carbons and an sp3 hybridized carbon.
Abstract:
Tridentate pincer ligand supported metal complexes are formed where the complex is a trianionic pincer ligand supported metal-alkylidyne complex or a tetra-anionic pincer-ligand supported metallacycloalkylene complex formed by addition of an alkyne to the trianionic pincer ligand supported metal-alkylidyne complex. The tridentate pincer ligand supported metal complex that includes a group 5-7 transition metal and an OCO trianionic pincer ligand or an alkyne adduct thereof and methods of preparing the complexes are disclosed. The use of the tridentate pincer ligand supported metal complex for the polymerization of alkynes is disclosed, where high molecular weight poly(alkyne)s can be formed in high yield. The poly(alkyne) can be a macrocyclic polymer.