Abstract:
A silicon solar cell with high photoelectric conversion efficiency is disclosed. A solar cell for converting light incident from an outside into electricity according to the present invention includes a substrate, a lower electrode, a ferroelectric layer, an auxiliary electrode, a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and an upper electrode. The lower electrode is formed on the substrate. The ferroelectric layer is formed on the substrate and outside the lower electrode. The auxiliary electrode is formed on the ferroelectric layer. The first conductivity-type semiconductor layer is formed on the lower electrode and the auxiliary electrode. The second conductivity-type semiconductor layer is formed on the first conductivity-type semiconductor layer, and is composed of a semiconductor of a second conductivity type opposite to a first conductivity type. The upper electrode is made of transparent conductive material, and is formed on the second conductivity-type semiconductor layer.
Abstract:
Disclosed are a semiconductor device manufactured using a paper as a substrate and a method of manufacturing the same. According to an embodiment of the present invention, the semiconductor device is manufactured by using a paper including pulp as a raw material or paper as a substrate coated with a heat-resistant material such as silicon. According to the present invention, a metal wiring layer such as a gate electrode is formed on the paper substrate by using a vacuum deposition method, or the like and an insulating layer is stacked thereon.