Abstract:
One exemplary embodiment can be a process for separating at least one amine from one or more hydrocarbons for regenerating the at least one amine. The process can include passing the at least one amine after contacting with the one or more hydrocarbons from a first vessel to a second vessel. Often, the second vessel includes one or more walls surrounding one or more baffles and contains at least one coalescing zone.
Abstract:
A process and apparatus for removing oxygenates from a petroleum stream of C3 and/or C4 hydrocarbons comprises water washing the petroleum stream to absorb oxygenates to provide a hydrocarbon stream lean in oxygenates and a water stream rich in oxygenates. The water stream is stripped to remove oxygenates into an oxygenate concentrated stream and an oxygenate-lean water stream. The lean water stream can be recycled to the water wash column.
Abstract:
One exemplary embodiment can be a process for oxidizing sulfides. The process can include passing an alkaline stream having about 1-about 30%, by weight, of an alkaline material and one or more sulfide compounds to a reaction zone having a metal phthalocyanine catalyst.
Abstract:
A method and apparatus for removing carbonyl sulfide (COS) from a hydrocarbon stream have been developed. The design allows removal of COS in the regeneration stream to less than 10 wppm, even at high concentrations of COS. The spent bed is regenerated using a portion of the treated product stream. The COS regeneration column provides increased contact and residence time.
Abstract:
Methods and systems for treating caustic materials are disclosed. In one exemplary embodiment, a method for treating caustic materials includes the steps of providing a first caustic solution stream including phenolic constituents and naphthenic constituents, mixing the first caustic solution stream with an acid solution, and separating phenolic acids from the first caustic solution stream. The method further includes further mixing the first caustic solution stream with additional acid solution and separating naphthenic acids from the first caustic solution stream. Still further, the method includes providing a second caustic solution stream including sulfidic constituents, mixing the first caustic solution stream with the second caustic solution stream to form a combined caustic solution stream, and oxidizing the sulfidic constituents of the combined caustic solution stream.
Abstract:
Methods and systems for treating caustic materials are disclosed. In one exemplary embodiment, a method for treating caustic materials includes the steps of providing a first caustic solution stream including phenolic constituents and naphthenic constituents, mixing the first caustic solution stream with an acid solution, and separating phenolic acids from the first caustic solution stream. The method further includes further mixing the first caustic solution stream with additional acid solution and separating naphthenic acids from the first caustic solution stream. Still further, the method includes providing a second caustic solution stream including sulfidic constituents, mixing the first caustic solution stream with the second caustic solution stream to form a combined caustic solution stream, and oxidizing the sulfidic constituents of the combined caustic solution stream.
Abstract:
A method and apparatus for removing carbonyl sulfide (COS) from a hydrocarbon stream have been developed. The design allows removal of COS in the regeneration stream to less than 10 wppm, even at high concentrations of COS. The spent bed is regenerated using a portion of the treated product stream. The COS regeneration column provides increased contact and residence time.
Abstract:
One exemplary embodiment can be a process for separating at least one amine from one or more hydrocarbons for regenerating the at least one amine. The process can include passing the at least one amine after contacting with the one or more hydrocarbons from a first vessel to a second vessel. Often, the second vessel includes one or more walls surrounding one or more baffles and contains at least one coalescing zone.
Abstract:
One exemplary embodiment can be a process for oxidizing sulfides. The process can include passing an alkaline stream having about 1-about 30%, by weight, of an alkaline material and one or more sulfide compounds to a reaction zone having a metal phthalocyanine catalyst.