Abstract:
Methods and apparatuses are provided for cracking a hydrocarbon. The method includes contacting a first hydrocarbon stream with a first cracking catalyst at a first cracking temperature in a first riser to produce a first riser effluent and a first spent catalyst. A second hydrocarbon stream is contacted with a second cracking catalyst at a second cracking temperature in a second riser to produce a second riser effluent and a second spent catalyst, where the second cracking temperature is less than the first cracking temperature. The first riser effluent and the second riser effluent are combined to produce a mixed riser effluent, and the mixed riser effluent is fractionated in a fractionation zone to produce a light cycle oil. The first spent catalyst and the second spent catalyst are combined in a reactor to produce a mixed spent catalyst.
Abstract:
Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactor effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.
Abstract:
Methods and apparatuses are provided for cracking a hydrocarbon. The method includes contacting a first hydrocarbon stream with a first cracking catalyst at a first cracking temperature in a first riser to produce a first riser effluent and a first spent catalyst. A second hydrocarbon stream is contacted with a second cracking catalyst at a second cracking temperature in a second riser to produce a second riser effluent and a second spent catalyst, where the second cracking temperature is less than the first cracking temperature. The first riser effluent and the second riser effluent are combined to produce a mixed riser effluent, and the mixed riser effluent is fractionated in a fractionation zone to produce a light cycle oil. The first spent catalyst and the second spent catalyst are combined in a reactor to produce a mixed spent catalyst.
Abstract:
Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactor effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.
Abstract:
Methods and systems for deoxygenating a biomass-derived pyrolysis oil are provided. An exemplary method includes combining a biomass-derived pyrolysis oil stream with a heated low-molecular weight fraction low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream, which is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent. A low-molecular weight fraction low-oxygen-pyoil diluent recycle stream is formed by contacting the low-oxygen biomass-derived pyrolysis oil effluent with a fractionation column to separate a low molecular weight fraction low-oxygen-pyoil diluent recycle stream at a cutpoint of about 225° C. or less. The low-molecular weight fraction low-oxygen-pyoil diluent recycle stream is then heated prior to combination with the biomass-derived pyrolysis oil stream.
Abstract:
Methods of and apparatuses for upgrading a hydrocarbon stream are provided. In an embodiment, a method of upgrading a hydrocarbon stream includes providing the hydrocarbon stream that includes a deoxygenated pyrolysis product. The hydrocarbon stream also includes a residual oxygen-containing compound content. The residual oxygen-containing compound content of the hydrocarbon stream is reduced to form an upgraded hydrocarbon stream.