摘要:
Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60° C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.
摘要:
Methods and apparatuses for catalytically generating a polyol from biomass are provided. An exemplary method includes the steps of: contacting a feed stream comprising biomass to acid conditions in a first reaction zone, wherein the acid conditions in the first reaction zone are sufficient to hydrolyze a saccharide from the biomass to generate glucose; directing at least a first portion of a first effluent from the first reaction zone to a second reaction zone; and contacting the at least first portion of the first effluent with a first saccharide-to-polyol catalyst system under conditions suitable for catalytic conversion of saccharide to polyol.
摘要:
An integrated alkylation and disproportionation process and apparatus are described. n-C4 and n-C5 are routed to a disproportionation reaction zone for conversion to iso-C4 and C6+ isoparaffin-rich product. The iso-C4 is routed to an alkylation reaction zone and reacted with refinery propylene and butenes to produce alkylate product. The C6+ isoparaffin-rich product and alkylate product are recovered. Unconverted iso-C4 and/or olefins are recycled to the alkylation reaction zone, and unconverted n-C4 and n-C5 are recycled to the disproportionation reaction zone.
摘要:
A flexible process for gasoline refineries is described. The process can vary depending on the available feedstock and the desired products. At one time, the process can involve disproportionating pentanes to a product mixture including isobutane and isohexane. At other times, by switching the feedstock and operating conditions, the process can convert a mixture of C4 and C7 paraffins to a low aromatic blendstock with suitable octane and a vapor pressure lower than butanes. The process can be performed in separate stand-alone units operated at different times, or a single unit can be operated according to one process at one time and according to the other process at another time.
摘要:
An integrated process for gasoline production is described. The process includes introducing a feed comprising n-C5 hydrocarbons into a disproportionation reaction zone in the presence of a disproportionation catalyst to form a disproportionation mixture comprising iso-C4 and C6+ disproportionation products and unreacted n-C5 hydrocarbons. An iso-C4 hydrocarbon stream and an olefin feed are introduced into an alkylation reaction zone in the presence of an alkylation catalyst to produce an alkylation mixture comprising alkylate and unreacted iso-C4 paraffins. The disproportionation mixture and the alkylation mixture are combined, and the combined mixture is separated into at least a stream comprising the alkylate product, an iso-C4 stream, and an unreacted n-C5 hydrocarbon stream. The iso-C4 stream is recycled to the alkylation reaction zone, and the unreacted n-C5 hydrocarbon stream is recycled to the disproportionation reaction zone. The stream comprising the alkylate product is recovered.
摘要:
Methods and systems for hydrogen self-sufficient production of hydrocarbons from a renewable feedstock are provided. An exemplary method includes providing a renewable feedstock; contacting the renewable feedstock and hydrogen from a hydrogen stream with one or more catalysts to generate an effluent comprising n-paraffins and by-product hydrocarbons having 9 or fewer carbon atoms; separating the by-product hydrocarbons from the effluent to generate a hydrocarbon by-product stream; and feeding the hydrocarbon by-product stream to a hydrogen plant to generate the hydrogen stream. In this exemplary embodiment, the by-product hydrocarbons constitute the entire feed and fuel of the hydrogen plant, and wherein no hydrogen is added from an external source.
摘要:
A process for refining naphtha and upgrading butanes is described. The process involves separating a hydrotreated heavy naphtha feed into a C7-rich fraction and a C8+-rich fraction in a separation zone and then reacting the C7-rich fraction with C4 paraffins to form to a low aromatic gasoline blendstock. The C8+-rich fraction is sent to a reforming zone to form a reformed product with higher octane and lower RVP than a reformed product derived from heavy naphtha.
摘要:
Methods of and apparatuses for upgrading a hydrocarbon stream are provided. In an embodiment, a method of upgrading a hydrocarbon stream includes providing the hydrocarbon stream that includes a deoxygenated pyrolysis product. The hydrocarbon stream also includes a residual oxygen-containing compound content. The residual oxygen-containing compound content of the hydrocarbon stream is reduced to form an upgraded hydrocarbon stream.
摘要:
Disclosed in one embodiment is a method for the catalytic pyrolysis of a carbonaceous material that includes contacting the carbonaceous material with a plurality of catalyst particles to produce a gas phase product and a solid phase product and separating the gas phase product from the solid phase product and the plurality of catalyst particles. The method further includes partially regenerating the plurality of catalyst particles by exposing the solid phase product and the catalyst particles to a first oxidizing condition to produce an oxidized solid phase and a partially-regenerated catalyst and cooling the partially-regenerated catalyst and a non-oxidized portion of the solid phase product. Still further, the method includes further regenerating the partially-regenerated catalyst by exposing the non-oxidized portion of the solid phase product and the partially-regenerated catalyst to a second oxidizing condition.
摘要:
An integrated process for gasoline production is described. The process includes introducing a feed comprising n-C5 hydrocarbons into a disproportionation reaction zone in the presence of a disproportionation catalyst to form a disproportionation mixture comprising iso-C4 and C6+ disproportionation products and unreacted n-C5 hydrocarbons. An iso-C4 hydrocarbon stream and an olefin feed are introduced into an alkylation reaction zone in the presence of an alkylation catalyst to produce an alkylation mixture comprising alkylate and unreacted iso-C4 paraffins. The disproportionation mixture and the alkylation mixture are combined, and the combined mixture is separated into at least a stream comprising the alkylate product, an iso-C4 stream, and an unreacted n-C5 hydrocarbon stream. The iso-C4 stream is recycled to the alkylation reaction zone, and the unreacted n-C5 hydrocarbon stream is recycled to the disproportionation reaction zone. The stream comprising the alkylate product is recovered.