Abstract:
A pressure swing adsorption process is provided to remove oxygen from a hydrogen stream through the use of a copper material in combination with layers of adsorbent to remove water, C2 and C3 hydrocarbons, as well as other impurities. The feed gas comprises more than 70 mol % hydrogen, at least 1 mol % methane and more than 10 ppmv oxygen. The purified product hydrogen stream comprises greater than 99 mol % hydrogen, with less than 1 ppmv oxygen.
Abstract:
A process of treating a natural gas stream is provided comprising sending natural gas stream through a first adsorbent bed to remove water and heavy hydrocarbons (C8+) to produce a partially treated gas stream in which the first adsorbent bed is regenerated by a temperature swing adsorption process and then sending the partially treated gas stream through a second adsorption bed to remove carbon dioxide and lighter hydrocarbons (C7−) to produce a purified natural gas stream wherein said second adsorption bed is regenerated by a temperature pressure swing adsorption process.
Abstract:
A multistage membrane system and a process for treating a gas stream is provided in which the multistage membrane system comprises at least two membrane units wherein a first stage membrane unit comprises a polymeric membrane and a second membrane unit comprises a microporous zeolitic inorganic membrane or a combination of a microporous zeolitic inorganic membrane and a polymeric membrane.
Abstract:
A method for producing a zeolitic adsorbent includes providing a zeolite material, providing a zeolite material, providing a first clay binder material and a second clay binder material, the first clay binder material having a greater median particle size than the second clay binder material, determining a desired adsorption kinetics rate for the zeolitic adsorbent, wherein the desired adsorption kinetics rate is based at least in part on a separations process in which the zeolitic adsorbent is desired to be employed, and selecting either the first clay binder material or the second clay binder material based at least in part on the determined desired adsorption kinetics rate. The method further includes blending the zeolite material and the selected first or second clay binder material to form a zeolite/binder blended system, forming a plurality of shaped zeolitic adsorbent pieces from the exchanged zeolite/binder blended system, binder-converting the clay binder material into a zeolite material, and ion-exchanging the binder-converted shaped pieces with an exchange cation to form an ion-exchanged zeolite/binder blended system.
Abstract:
A process of treating a natural gas stream is provided comprising sending natural gas stream through a first adsorbent bed to remove water and heavy hydrocarbons (C8+) to produce a partially treated gas stream in which the first adsorbent bed is regenerated by a temperature swing adsorption process and then sending the partially treated gas stream through a second adsorption bed to remove carbon dioxide and lighter hydrocarbons (C7−) to produce a purified natural gas stream wherein said second adsorption bed is regenerated by a temperature pressure swing adsorption process.
Abstract:
A pressure swing adsorption process is provided to remove oxygen from a hydrogen stream through the use of a copper material in combination with layers of adsorbent to remove water, C2 and C3 hydrocarbons, as well as other impurities. The feed gas comprises more than 70 mol % hydrogen, at least 1 mol % methane and more than 10 ppmv oxygen. The purified product hydrogen stream comprises greater than 99 mol % hydrogen, with less than 1 ppmv oxygen.
Abstract:
A multistage membrane system and a process for treating a gas stream is provided in which the multistage membrane system comprises at least two membrane units wherein a first stage membrane unit comprises a polymeric membrane and a second membrane unit comprises a microporous zeolitic inorganic membrane or a combination of a microporous zeolitic inorganic membrane and a polymeric membrane.