Abstract:
A powderous positive electrode material for a lithium secondary battery, the material having the general formula Li1+x[Ni1−a−b−cMaM′bM″c] 1−xO2−z; M being either one or more elements of the group Mn, Zr and Ti, M′ being either one or more elements of the group Al, B and Co, M″ being a dopant different from M and M′, x, a, b and c being expressed in mol with −0.02≦x≦0.02, 0≦c≦0.05, 0.10≦(a+b)≦0.65 and 0≦z≦0.05; and wherein the powderous material is characterized by having a BET value ≦0.37 m2/g, a Dmax
Abstract:
A layered lithium metal oxide powder for a cathode material used in a rechargeable battery, with the general formula (1−x)[Lia-bAb]3a[CO1-cMc]3b[O2-d-eN′e]6c.xLi3PO4, with 0.0001≤x≤0.05, 0.90≤a≤1.10, 0
Abstract:
A powderous positive electrode material for a lithium secondary battery has the general formula Li1+x[Ni1−a−b−cMaM′bM″c]1−xO2−z. M is one or more elements of the group Mn, Zr and Ti. M′ is one or more elements of the group Al, B and Co. M″ is a dopant different from M and M′, and x, a, b and c are expressed in mol with −0.02≤x≤0.02, 0≤c≤0.05, 0.10≤(a+b)≤0.65 and 0≤z≤0.05. The material has an unconstrained cumulative volume particle size distribution value (Γ0(D10P=0)), a cumulative volume particle size distribution value after having been pressed at a pressure of 200 MPa (ΓP(D10P=200)) and a cumulative volume particle size distribution value after having been pressed at a pressure of 300 MPa (ΓP(D10P=300)). When ΓP(D10P=200) is compared to Γ0(D10P=0), the relative increase in value is less than 100%. When ΓP(D10P=300) is compared to Γ0(D10P=0), the relative increase in value is less than 120%.
Abstract:
A powderous positive electrode material for a lithium secondary battery has the general formula Li1+x[Ni1−a−b−cMaM′bM″c]1−xO2−z. M is one or more elements of the group Mn, Zr and Ti. M′ is one or more elements of the group Al, B and Co. M″ is a dopant different from M and M′, and x, a, b and c are expressed in mol with −0.02≤x≤0.02, 0≤c≤0.05, 0.10≤(a+b)≤0.65 and 0≤z≤0.05. The material has an unconstrained cumulative volume particle size distribution value (Γ0(D10P=0)), a cumulative volume particle size distribution value after having been pressed at a pressure of 200 MPa (ΓP(D10P=200)) and a cumulative volume particle size distribution value after having been pressed at a pressure of 300 MPa (ΓP(D10P=300)). When ΓP(D10P=200) is compared to Γ0(D10P=0), the relative increase in value is less than 100%. When ΓP(D10P=300) is compared to Γ0(D10P=0), the relative increase in value is less than 120%.
Abstract:
A lithium metal oxide powder for use as a cathode material in a rechargeable battery, consisting of a core material and a surface layer, the core having a layered crystal structure consisting of the elements Li, a metal M and oxygen, wherein the Li to M molar ratio is between 0.98 and 1.01, and preferably between 0.99 and 1.00, wherein the metal M has the formula M=Co1-aM′a, with 0≦a≦0.05, wherein M′ is either one or more metals of the group consisting of Al, Ga and B; and the surface layer consisting of a mixture of the elements of the core material and inorganic N- and N′-based oxides, wherein N is either one or more metals of the group consisting of Mg, Ti, Fe, Cu, Ca, Ba, Sn, Sb, Na, Zn, and Si; and wherein N′ is either one or more metals of the group consisting of Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sc, Ce, Pr, Nd, Gd, Dy, and Er.
Abstract:
A lithium metal oxide powder for a cathode material in a rechargeable battery, comprising a core material and a surface layer, the core having a layered crystal structure consisting of the elements Li, a metal M and oxygen, wherein the metal M has the formula M=Co1-aM′a, with 0≦a≦0.05, wherein M′ is selected from one or more metals of the group consisting of Al, Ga and B; and the surface layer comprising a mixture of the elements of the core material Li, M and oxygen, inorganic N-based oxides and a cubic phase oxide having a crystal structure with a Fd-3mS space group, wherein N is selected from one or more metals of the group consisting of Mg, Ti, Fe, Cu, Ca, Ba, Y, Sn, Sb, Na, Zn, Zr and Si.