Abstract:
In a method for diagnosing and/or prognosis of cancers, diagnosing origin of tumor cells, optimizing cancer therapy, and screening active substances for oncology, the mechanical properties of tumor cells and reference cells are analyzed under mechanical load that causes linear or non-linear deformation of the loaded cell. The engineering strain of the cells caused by directed mechanical stress being introduced is used to determine metastasis risk and the presence of uncontrollably proliferating and/or invasive cells, or the origin of the tumor. The metastasis risk is determined based on the proportion of cells in the sample exhibiting engineering strain in a direction opposite to the stressing direction. The risk of the presence of uncontrollably proliferating cells for non-linear deformation of the cell is determined in the sample based on the mean value of the engineering strain in the direction of cell stressing.
Abstract:
In a method for diagnosing and/or prognosis of cancers, diagnosing origin of tumor cells, optimizing cancer therapy, and screening active substances for oncology, the mechanical properties of tumor cells and reference cells are analyzed under mechanical load that causes linear or non-linear deformation of the loaded cell. The engineering strain of the cells caused by directed mechanical stress being introduced is used to determine metastasis risk and the presence of uncontrollably proliferating and/or invasive cells, or the origin of the tumor. The metastasis risk is determined based on the proportion of cells in the sample exhibiting engineering strain in a direction opposite to the stressing direction. The risk of the presence of uncontrollably proliferating cells for non-linear deformation of the cell is determined in the sample based on the mean value of the engineering strain in the direction of cell stressing.