摘要:
Embodiments of the present invention comprises one or more of an article composed of a copolymer, a copolymer made from a process, and a process for the preparation of a copolymer composition by metal free enzyme ring-opening polymerization of a monomer composition comprising i) an ethylene brassylate monomer; ii) a 1-4 dioxan-2-one (DO); iii) lipase B from Candida antarctica (Novozyme® 435) and at an elevated temperature, processing the monomer reactants i) and ii) to a copolymer via ring-opening polymerization under solvent-free conditions and a nitrogen atmosphere in the absence of a metal and the presence of the lipase to produce a random EB-co-DO copolymer.
摘要:
Poly(amine-co-ester) polymers, methods of forming active agent-load polyplexes and particles therefrom, and methods of using them for delivery of nucleic acid agents with optimal uptake have been developed. Examples demonstrate critical molecular weights in combination with exposed carboxylic and/or hydroxyl groups, and methods of making. Typically, the compositions are less toxic, more efficient at drug delivery, or a combination thereof compared to a control other transfection reagents. In some embodiments, the compositions are suitable for in vivo delivery, and can be administered systemically to a subject to treat a disease or condition. For poly(amine-co-ester) polymers with specific amine or hydroxyl group containing end-groups in admixture with PEGylated poly(amine-co-ester) polymers, in vivo delivery to the lung by inhalation has been shown.
摘要:
Peptide nucleic acid (PNA) oligomers having one or more hydroxymethyl γ-substitutions, also referred to herein as “serγPNA”, are provided. The hydroxymethyl γ-substitution preserves and amplifies the helical preorganization that is valuable for DNA duplex invasion by the oligomer. serγPNA-containing triplex-forming molecules can be used in combination with a donor DNA fragment to facilitate genome modification in vitro and in vivo.
摘要:
Compositions containing populations of nanoparticles that show selective uptake by tissues and other cell types such as lung cells and/or bone marrow cells are described. The nanoparticles show this uptake by virtue of their size and in the absence of a targeting agent on the surface of the nanoparticles, i.e., passive targeting. The population of nanoparticles contain poly(lactic acid-co-glycolic acid), have a diameter between about 70 nm and about 220 nm, and at least 90% of the nanoparticles have a diameter between about 110 nm and about 129 nm. The nanoparticles are manufactured using a microfluidic system. The compositions can be used to treat lung- and/or blood-related genetic disorders in in vivo gene editing technologies.
摘要:
Methods for gene editing of embryos in vitro are provided. The methods typically include contacting an embryo in vitro with an effective amount of non-enzymatic (e.g., non-nuclease) gene editing active agent(s) optionally encapsulated, entrapped, complexed to or dispersed in polymeric particles to induce at least one alteration in the genome of the embryo. The embryo can be a single cell zygote, however, treatment of male and female gametes prior to fertilization, and embryos having 2, 4, 8, or 16 cells, and including not only zygotes, but also morulas and blastocysts are also provided. Typically, the embryo is contacted with the particles on culture days 0-6 during or following in vitro fertilization.
摘要:
Compositions and methods of genome engineering in vitro and in vivo are provided. In some embodiments, the compositions are triplex forming molecules that bind or hybridize to a target region sequence in the human cystic fibrosis transmembrane conductance regulator (CFTR) gene. Preferably the triplex forming molecules are peptide nucleic acids that include a Hoogsteen binding peptide nucleic acid (PNA) segment and a Watson-Crick binding PNA segment collectively totaling no more than 50 nucleobases in length, wherein the two segments can binid or hybridize to a target region in the CFTR gene having a polypurine sequences and induce strand invasion, displacement, and formation of a triple-stranded molecule among the two PNA segments and the target region's sequence. Methods of using the triplex forming molecules to treat cystic fibrosis are also provided.
摘要:
Polyamine-co-ester-co-ortho ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control or other transfection reagents.
摘要:
Poly(amine-co-ester) polymers, methods of forming active agent-load nanoparticles therefrom, and methods of using the nanoparticles for drug delivery are disclosed. The nanoparticles can be coated with an agent that reduces surface charge, an agent that increases cell-specific targeting, or a combination thereof. Typically, the loaded nanoparticles are less toxic, more efficient at drug delivery, or a combination thereof compared to a control other transfection reagents. In some embodiments, the nanoparticles are suitable for in vivo delivery, and can be administered systemically to a subject to treat a disease or condition.
摘要:
Poly(amine-co-ester) polymers, methods of forming active agent-load polyplexes and particles therefrom, and methods of using them for delivery of nucleic acid agents with optimal uptake have been developed. Examples demonstrate critical molecular weights in combination with exposed carboxylic and/or hydroxyl groups, and methods of making. Typically, the compositions are less toxic, more efficient at drug delivery, or a combination thereof compared to a control other transfection reagents. In some embodiments, the compositions are suitable for in vivo delivery, and can be administered systemically to a subject to treat a disease or condition.
摘要:
Nanoparticles useful for drug delivery are described. In one aspect, the nanoparticles contain poly(amine-co-ester)s or poly(amine-co-amide)s (PACE) modified with poly(ethylene glycol) (PACE-PEG), and can be optionally blended with a second PACE polymer optionally containing endgroup modifications. In another aspect, the nanoparticles contain a core containing a PACE polymer optionally containing endgroup modifications, and a polymeric surfactant non-covalently conjugated to the surface of the nanoparticles. The nanoparticles contain a peptide or protein targeting moiety that is covalently conjugated to the PACE-PEG polymer or to the surfactant on the surface of the nanoparticles via a linkage that contains a succinimide or substituted sulfone moiety, respectively. The nanoparticles provide as a versatile platform for the delivery of nucleic acids, such as mRNA.