Abstract:
A heat exchanger assembly for cooling of air includes a blower, an air duct and a heat exchanger integrated in a coolant circuit designed to allow coolant to flow therethrough and air to be applied to it. Heat from the air is transferred to the vaporizing coolant. The blower is arranged upstream of the heat exchanger in the airflow direction so that waste from the blower heats the air before reaching the heat exchanger. The heat exchanger is designed as tubular heat exchanger with tubes arranged in rows having a double-row design. A method for operating a climate control system for a combined refrigeration system and heat pump operation for cooling and for heating, and a method for identifying and prevention of icing of the evaporator of the climate control system are also disclosed.
Abstract:
The invention concerns an air conditioning system for conditioning the air of a passenger compartment of a motor vehicle including a housing with a first flow channel and a second flow channel for conducting air and a refrigerant circuit with an evaporator and a condenser. The evaporator is arranged in the first flow channel and the condenser in the second flow channel. The air conditioning system is designed for cooling and heating the passenger compartment and for a reheat operation. The setting of the operating mode is done only via the controlling of air guidance mechanisms. One of the heat exchangers evaporator or condenser is arranged with a part of the heat transfer surface in both the first and the second flow channel.
Abstract:
The invention relates to a heat exchanger arrangement for heating of air, with a heat exchanger (8) which is integrated into a refrigerant circuit (60), configured to be able to have refrigerant flow through it and able to be impinged on by air. The heat is transferred from the refrigerant to the air. The heat exchanger (8) exhibits two components (8a, 8b) configured to be segregated from each other. The first component (8a) is configured with a condensation surface and a heat-removal surface. The second component (8b) exhibits a supercooling surface. Between the components (8a, 8b) on the refrigerant side, a refrigerant phase separation element is placed. The heat exchanger is configured as a tubular heat exchanger with tubes situated in rows, wherein the first component (8a) is configured with at least two rows and the second component (8b) with at least one row.
Abstract:
The invention concerns an air conditioning system for conditioning the air of a passenger compartment of a motor vehicle including a housing with a first flow channel and a second flow channel for conducting air and a refrigerant circuit with an evaporator and a condenser. The evaporator is arranged in the first flow channel and the condenser in the second flow channel. The air conditioning system is designed for cooling and heating the passenger compartment and for a reheat operation. The setting of the operating mode is done only via the controlling of air guidance mechanisms. One of the heat exchangers evaporator or condenser is arranged with a part of the heat transfer surface in both the first and the second flow channel.
Abstract:
The invention relates to a heat exchanger arrangement for heating of air, with a heat exchanger (8) which is integrated into a refrigerant circuit (60), configured to be able to have refrigerant flow through it and able to be impinged on by air. The heat is transferred from the refrigerant to the air. The heat exchanger (8) exhibits two components (8a, 8b) configured to be segregated from each other. The first component (8a) is configured with a condensation surface and a heat-removal surface. The second component (8b) exhibits a supercooling surface. Between the components (8a, 8b) on the refrigerant side, a refrigerant phase separation element is placed. The heat exchanger is configured as a tubular heat exchanger with tubes situated in rows, wherein the first component (8a) is configured with at least two rows and the second component (8b) with at least one row.
Abstract:
A heat exchanger assembly for cooling of air includes a blower, an air duct and a heat exchanger integrated in a coolant circuit designed to allow coolant to flow therethrough and air to be applied to it. Heat from the air is transferred to the vaporizing coolant. The blower is arranged upstream of the heat exchanger in the airflow direction so that waste from the blower heats the air before reaching the heat exchanger. The heat exchanger is designed as tubular heat exchanger with tubes arranged in rows having a double-row design. A method for operating a climate control system for a combined refrigeration system and heat pump operation for cooling and for heating, and a method for identifying and prevention of icing of the evaporator of the climate control system are also disclosed.